首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing transgenic Arabidopsis plants, we analyzed the mechanism for the translocation of peroxisomal proteins from the cytosol into the matrix that is mediated by the N-terminal targeting signal. A hybrid Arabidopsis variety was generated which accumulates two kinds of originally bacterial proteins, beta-glucuronidase (GUS) and a GUS chimeric protein designated as CS-delta C42-GUS, that carries the N-terminal targeting signal for glyoxysomal citrate synthase. Because the CS-delta C42-GUS is targeted to peroxisomes but had never been observed to be processed to produce the mature protein, it can be distinguished from the GUS protein by its molecular size. Cell fractionation analyses showed that the native GUS protein, although lacking the targeting signal, was co-localized with the CS-delta C42-GUS protein in the peroxisomes of the hybrid plant. It is suggested that the native GUS protein forms oligomeric structures with the peroxisome-targeted chimeric proteins and can therefore be transported into peroxisomes. Sucrose density gradient centrifugation revealed that the native GUS and the chimeric GUS indeed are present both as a dimer and a tetramer in the Arabidopsis hybrid variety.  相似文献   

2.
Peroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsis thaliana homologue of PEX19 which is a predominantly cytosolic protein. AtPEX19 is encoded by two genes (designated AtPEX19-1 and AtPEX19-2) that are expressed in all tissues and at all developmental stages of the plant. Quantitative real time PCR shows that AtPEX19-1 and AtPEX19-2 have distinct expression profiles. Using in vitro translation and co-immunoprecipitation AtPEX19-1 was shown to bind to the Arabidopsis peroxisomal membrane protein PEX10. Additionally, bacterially expressed recombinant AtPEX19-1 was able to bind a fusion protein consisting of the C-terminus of PEX10 and glutathione S-transferase in pull-down assays, thereby demonstrating that non-farnesylated AtPEX19 can interact with the C-terminus of AtPEX10. Purified recombinant AtPEX19-1 was analysed by gel filtration chromatography and was found to have a molecular weight consistent with it forming a dimer and a dimer was detected in Arabidopsis cell extracts that was slightly destabilised in the presence of DTT. Moreover, cross-linking studies of native AtPEX19 suggest that in vivo it is the dimeric species of the protein that preferentially forms complexes with other proteins.  相似文献   

3.
Peroxisomes have pivotal roles in several metabolic processes, such as the detoxification of H2O2 and β-oxidation of fatty acids, and their functions are tightly regulated by multiple factors involved in peroxisome biogenesis, including protein transport. This study describes the isolation of an embryonic lethal Arabidopsis thaliana mutant, aberrant peroxisome morphology9 (apem9), which is compromised in protein transport into peroxisomes. The APEM9 gene was found to encode an unknown protein. Compared with apem9 having the nucleotide substitution, the knockdown mutants showed severe defects in peroxisomal functions and plant growth. We showed that expression of APEM9 altered PEROXIN6 (PEX6) subcellular localization from the cytosol to peroxisomes. In addition, we showed that PEX1 and PEX6 comprise a heterooligomer and that this complex was recruited to peroxisomal membranes via protein–protein interactions of APEM9 with PEX6. These findings show that APEM9 functions as an anchoring protein, similar to Pex26 in mammals and Pex15p in yeast. Interestingly, however, the identities of amino acids among these anchoring proteins are quite low. These results indicate that although the association of the PEX1-PEX6 complex with peroxisomal membranes is essential for peroxisomal functions, the protein that anchors this complex evolved uniquely in plants.  相似文献   

4.
Peroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsisthaliana homologue of PEX19 which is a predominantly cytosolic protein. AtPEX19 is encoded by two genes (designated AtPEX19-1 and AtPEX19-2) that are expressed in all tissues and at all developmental stages of the plant. Quantitative real time PCR shows that AtPEX19-1 and AtPEX19-2 have distinct expression profiles. Using in vitro translation and co-immunoprecipitation AtPEX19-1 was shown to bind to the Arabidopsis peroxisomal membrane protein PEX10. Additionally, bacterially expressed recombinant AtPEX19-1 was able to bind a fusion protein consisting of the C-terminus of PEX10 and glutathione S-transferase in pull-down assays, thereby demonstrating that non-farnesylated AtPEX19 can interact with the C-terminus of AtPEX10. Purified recombinant AtPEX19-1 was analysed by gel filtration chromatography and was found to have a molecular weight consistent with it forming a dimer and a dimer was detected in Arabidopsis cell extracts that was slightly destabilised in the presence of DTT. Moreover, cross-linking studies of native AtPEX19 suggest that in vivo it is the dimeric species of the protein that preferentially forms complexes with other proteins.  相似文献   

5.
Karnik SK  Trelease RN 《Plant physiology》2005,138(4):1967-1981
Homologs of peroxin 16 genes (PEX16) have been identified only in Yarrowia lipolytica, humans (Homo sapiens), and Arabidopsis (Arabidopsis thaliana). The Arabidopsis gene (AtPEX16), previously reported as the SSE1 gene, codes for a predicted 42-kD membrane peroxin protein (AtPex16p). Lin et al. (Y. Lin, J.E. Cluette-Brown, H.M. Goodman [2004] Plant Physiol 135: 814-827) reported that SSE1/AtPEX16 was essential for endoplasmic reticulum (ER)-dependent oil and protein body biogenesis in peroxisome-deficient maturing seeds and likely also was involved in peroxisomal biogenesis based on localization of stably expressed green fluorescent protein::AtPex16p in peroxisomes of Arabidopsis plants. In this study with Arabidopsis suspension-cultured cells, combined in vivo and in vitro experiments revealed a novel dual organelle localization and corresponding membrane association/topology of endogenous AtPex16p. Immunofluorescence microscopy with antigen affinity-purified IgGs showed an unambiguous, steady-state coexistence of AtPex16p in suspension cell peroxisomes and ER. AtPex16p also was observed in peroxisomes and ER of root and leaf cells. Cell fractionation experiments surprisingly revealed two immunorelated polypeptides, 42 kD (expected) and 52 kD (unexpected), in homogenates and microsome membrane pellets derived from roots, inflorescence, and suspension cells. Suc-gradient purifications confirmed the presence of both 42-kD and 52-kD polypeptides in isolated peroxisomes (isopycnic separation) and in rough ER vesicles (Mg2+ shifted). They were found peripherally associated with peroxisome and ER membranes but not as covalently bound subunits of AtPex16p. Both were mostly on the matrix side of peroxisomal membranes and unexpectedly mostly on the cytosolic side of ER membranes. In summary, AtPex16p is the only authentic plant peroxin homolog known to coexist at steady state within peroxisomes and ER; these data provide new insights in support of its ER-related, multifunctional roles in organelle biogenesis.  相似文献   

6.
How are proteins imported into mitochondria?   总被引:38,自引:0,他引:38  
G Schatz  R A Butow 《Cell》1983,32(2):316-318
  相似文献   

7.
Lister R  Chew O  Rudhe C  Lee MN  Whelan J 《FEBS letters》2001,506(3):291-295
Using in vitro import assays into purified mitochondria and chloroplasts we found that Arabidopsis ferrochelatase-I and ferrochelatase-II were not imported into mitochondria purified from Arabidopsis (or several other plants) but were imported into pea leaf chloroplasts. Other dual targeted proteins could be imported into purified mitochondria from Arabidopsis. As only two ferrochelatase genes are present in the completed Arabidopsis genome, the presence of ferrochelatase activity in plant mitochondria needs to be re-evaluated. Previous reports of Arabidopsis ferrochelatase-I import into pea mitochondria are due to the fact that pea leaf (and root) mitochondria appear to import a variety, but not all chloroplast proteins. Thus pea mitochondria are not a suitable system to either study dual targeting, or to distinguish between isozymes present in mitochondria and chloroplasts.  相似文献   

8.
9.
In the filamentous fungus Neurospora crassa, glyoxysomes and Woronin bodies coexist in the same cell. Because several glyoxysomal matrix proteins and also HEX1, the dominant protein of Woronin bodies, possess typical peroxisomal targeting signals, the question arises as to how protein targeting to these distinct yet related types of microbodies is achieved. Here we analyzed the function of the Neurospora ortholog of PEX14, an essential component of the peroxisomal import machinery. PEX14 interacted with both targeting signal receptors and was localized to glyoxysomes but was virtually absent from Woronin bodies. Nonetheless, a pex14Delta mutant not only failed to grow on fatty acids because of a defect in glyoxysomal beta-oxidation but also suffered from cytoplasmic bleeding, indicative of a defect in Woronin body-dependent septal pore plugging. Inspection of pex14Delta mutant hyphae by fluorescence and electron microscopy indeed revealed the absence of Woronin bodies. When these cells were subjected to subcellular fractionation, HEX1 was completely mislocalized to the cytosol. Expression of GFP-HEX1 in wild-type mycelia caused the staining of Woronin bodies and also of glyoxysomes in a targeting signal-dependent manner. Our data support the view that Woronin bodies emerge from glyoxysomes through import of HEX1 and subsequent fission.  相似文献   

10.
An oligomeric protein is imported into peroxisomes in vivo   总被引:32,自引:15,他引:17       下载免费PDF全文
《The Journal of cell biology》1994,127(5):1245-1257
The mechanism of translocation of peroxisomal proteins from the cytoplasm into the matrix is largely unknown. We have been studying this problem in yeast. We show that the peroxisomal targeting sequences SKL or AKL, with or without a spacer of nine glycines (G9), are sufficient to target chloramphenicol acetyltransferase (CAT) to peroxisomes of Saccharomyces cerevisiae in vivo. The mature form of CAT is a homotrimer, and complete trimerization of CAT was found to occur within a few minutes of synthesis. In contrast, import, measured by immunoelectron microscopy and organellar fractionation, occurred over several hours. To confirm that import of preassembled CAT trimers was occurring, we co-expressed CAT-G9-AKL with CAT lacking a peroxisomal targeting sequence but containing a hemagglutinin-derived epitope tag (HA-CAT). We found that HA-CAT was not imported unless it was co- expressed with CAT-G9-AKL. Both proteins were released from the organelles under mild conditions (pH 8.5) that released other matrix proteins, indicating that import had occurred. These results strongly suggested that HA-CAT was imported as a heterotrimer with CAT-G9-AKL. The process of oligomeric import also occurs in animal cells. When HA- CAT was co-expressed with CAT-G9-AKL in CV-1 cells, HA-CAT co-localized with peroxisomes but was cytoplasmic when expressed alone. It is not clear whether the import of globular proteins into peroxisomes occurs through peroxisomal membrane pores or involves membrane internalization. Both possibilities are discussed.  相似文献   

11.
《Molecular cell》2022,82(17):3209-3225.e7
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

12.
As a step toward understanding the homeostasis of peroxisomes in mammalian cells, we investigated a degradation system of peroxisomes in Chinese hamster ovary (CHO)-K1 cells in response to the nutrient-starvation. Peroxisomal proteins were degraded apparently in a preferential manner as compared to cytosolic proteins, when CHO-K1 cells were starved in Hank's solution and then re-cultured in a normal medium. We verified whether microtubule-associated protein I light chain 3 (LC3), an essential factor for autophagy, was involved in the degradation of peroxisomal proteins. In the LC3-knocked-down CHO-K1 cells, the specific degradation of peroxisomal proteins was no longer observed and proteins including peroxisomal and cytosolic proteins were rather non-selectively degraded under the starvation condition. The starvation-dependent non-selective protein degradation was inhibited with proteasome inhibitors, MG132 and Epoxomicin. The integral membrane peroxin, Pex14p interacted with membrane-bound LC3-II, the modified form of LC3, via microtubules under the starvation condition. Taken together, these results suggest that peroxisomal proteins are degraded by two degradation systems involving autophagy and proteasomes depending on various cell-culture conditions, and that Pex14p plays a pivotal role as a prerequisite factor for the degradation of peroxisomal proteins by autophagy with the aid of microtubules.  相似文献   

13.
Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes.  相似文献   

14.
Previously it has been shown that the endogenous Arabidopsis peroxin, AtPEX16, coexisted at steady state in membranes of the endoplasmic reticulum (ER) and peroxisomes. Herein, an ER-to-peroxisome trafficking pathway and the requisite molecular targeting signals for mycAtPEX16 transiently expressed in Arabidopsis and tobacco BY-2 suspension cells are described. Immunofluorescent mycAtPEX16 was observed initially in the cytosol (<2 h) and subsequently (2-4 h) in perinuclear/reticular ER and non-Golgi/non-peroxisome structures termed the ER-peroxisome intermediate compartment. After 4 h, all catalase- and ascorbate peroxidase-containing peroxisomes also possessed mycAtPEX16, indicative of mycAtPEX16 sorting to pre-existing peroxisomes. Incubations of bombarded cells at 15 degrees C, or in brefeldin A at 25 degrees C, resulted in accumulations of mycAtPEX16 within the ER. Following re-equilibration of cold-treated cells at 25 degrees C, or removal of brefeldin A, mycAtPEX16 was observed mainly in the ER-peroxisome intermediate compartment, and later within all of the peroxisomes in both species. Two internal membrane helices and the intervening sequence including the amino acid residues -VRS- were found necessary and sufficient for targeting AtPEX16 first to the ER and then to peroxisomes. Individual targeting signals for these organelles were indistinguishable, indicative of overlapping signal(s). In summary, the trafficking study of AtPEX16 revealed a dynamic link between the ER and pre-existing peroxisomes, which provided novel data in support of an upgraded semi-autonomous peroxisome model portraying participation of the ER in the sorting of certain peroxisome membrane proteins, such as AtPEX16, through an intermediate compartment to pre-existing plant peroxisomes.  相似文献   

15.
16.
Among peroxins involved in peroxisome biogenesis, only Pex8p is predominantly intraperoxisomal at steady state. Pex8p is necessary for peroxisomal matrix protein import via the PTS1 and PTS2 pathways. It is proposed to bridge two peroxisomal membrane subcomplexes comprised of the docking (Pex13p, Pex14p, Pex17p) and RING (Pex2p, Pex10p, Pex12p) peroxins and is also implicated in cargo release of PTS1 proteins in the matrix. We show that Pichia pastoris Pex8p (PpPex8p) enters the peroxisome matrix using two redundant pathways in a Pex14p-dependent, but Pex2p-independent, manner, showing that the intact importomer and RING subcomplex are not required for its import. One pathway depends on the TPR motifs in Pex5p, the C-terminal PTS1 sequence (AKL) in PpPex8p, and the intraperoxisomal presence of this peroxin. The alternative pathway uses the PTS2 receptor, Pex7p, its accessory protein, Pex20p, and a putative PTS2 motif in PpPex8p, but does not require intraperoxisomal PpPex8p. Pex20p interaction with PpPex8p is independent of Pex7p, but the interaction of PpPex8p with Pex7p requires Pex20p. These data suggest a direct interaction between PpPex8p and Pex20p. Our studies shed light on the mechanism and evolution of the dual import pathways for PpPex8p.  相似文献   

17.
PEX5, PEX7 and PEX2 are involved in the peroxisomal matrix protein import machinery. PEX5 and PEX7 are the receptors for the proteins harbouring, respectively, a PTS1 and a PTS2 peroxisomal targeting sequence and cycle between the cytoplasm and the peroxisome. PEX2 belongs to the RING-finger complex located in the peroxisomal membrane and acts in protein import downstream of PEX5 and PEX7; it is therefore required for the import of both PTS1 and PTS2 proteins. We have shown previously that PEX2 deficiency leads to an impairment of meiotic commitment in the filamentous fungus Podospora anserina. Here we report that both PEX5 and PEX7 receptors are dispensable for this commitment but are needed for normal sexual cycle. Data suggest also a new role of PEX2 and/or the RING-finger complex in addition to their role in PTS1 and PTS2 import. Strikingly, Deltapex5 and Deltapex7 single and double knockout strains analyses indicate that Deltapex7 acts as a partial suppressor of Deltapex5 life cycle deficiencies. Moreover, contrary to pex2 mutants, Deltapex5 and Deltapex7 show mitochondrial morphological abnormalities.  相似文献   

18.
X Gao  J L Marrison  M R Pool  R M Leech    A Baker 《Plant physiology》1996,112(4):1457-1464
To understand and manipulate plant peroxisomal protein targeting, it is important to establish the universality or otherwise of targeting signals. Contradictory results have been published concerning the nature and location of the glyoxysomal/peroxisomal targeting signal of isocitrate lyase (ICL). L.J. Olsen, W.F. Ettinger, B. Damsz, K. Matsudaira, A. Webb, and J.J. Harada ([1993] Plant Cell 5: 941-952) concluded that the last 5 amino acids (AKSRM) of Brassica napus ICL were sufficient and the last 37 amino acids were necessary for targeting to Arabidopsis leaf peroxisomes. In contrast, R. Behari and A. Baker ([1993]) J Biol Chem 268: 7315-7322) could find no requirement for the almost identical carboxy-terminal sequence AKARM for import of Ricinus communis ICL into isolated sunflower cotyledon glyoxysomes. To resolve this discrepancy, the import characteristics of a mutant R. communis ICL lacking the last 19 amino acids of the carboxy terminus was studied. ICL delta 19 was able to be imported by isolated sunflower glyoxysomes and by tobacco leaf peroxisomes when expressed transgenically. These results demonstrate that the in vitro import system faithfully reflects targeting in vivo, and that the source of the organelles (Arabidopsis versus sunflower, leaf peroxisomes versus seed glyoxysomes) is not responsible for observed differences between B. napus and R. communis ICL. The R. communis enzyme would therefore appear to possess an additional glyoxysome/peroxisome targeting signal that is lacking in the B. napus protein.  相似文献   

19.
Import of stably folded proteins into peroxisomes.   总被引:21,自引:1,他引:20       下载免费PDF全文
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.  相似文献   

20.
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号