首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through the injection of f-aequorin and the use of a photon imaging microscope, we have previously reported that a rhythmic series of intercellular Ca2+ waves circumnavigate zebrafish embryos over a 10 h period during gastrulation and axial segmentation. These waves first appear at about 65% epiboly and continue to arise every 5-10 min up to at least the 16-somite stage. In response to our publication, it was suggested that the waves may be an artefact caused by dechorionation of the embryos and would not be observed during the development of intact embryos (i.e. those with chorions). Here we demonstrate (again initially by aequorin imaging) that the rhythmic intercellular Ca2+ waves that traverse the blastoderm margin can also be observed in embryos that have an intact chorion. In addition, the appearance time, propagation pathway, velocity, duration and Ca2+ rise of the waves, as well as the interwave interval and the timing of wave onset, are approximately the same in both dechorionated embryos and those with an intact chorion. Furthermore, by loading intact embryos with Ca(2+)-green dextran at the single-cell stage and then using scanning confocal microscopy to obtain high-resolution images, we confirm the presence of circumferential Ca2+ waves and show that they pass through a population of deep cells located at the blastoderm margin. The confirmation of these pan-embryonic Ca2+ waves in zebrafish further corroborates our earlier suggestion that such waves might play a fundamental role in normal embryonic patterning during the gastrula period.  相似文献   

2.
3.
The regulation of cytokinesis ingianf' embryonic cells(i.e.,> 500 μm in diameter)presents exacting challenges that include long-range signaling with respect to time and space; the transport and assembly,followed by disassembly,of an extensive contractile apparatus; and the remodeling and addition of new surface membrane to the resulting daughter cells.  相似文献   

4.
5.
6.
Webb SE  Fluck RA  Miller AL 《Biochimie》2011,93(12):2112-2125
The ex-utero fertilization and development of the optically clear embryos of teleost fish have long been favorites of developmental biologists. They have, therefore, provided considerable insight with regards to our understanding of embryonic pattern formation and the early development of vertebrates. These attributes have also been most helpful in the visualization of Ca2+ signaling events that have been reported to accompany many of the fundamental steps and processes that constitute early embryonic development. These include egg activation; segregation of the cytoplasm from the yolk; cytokinesis; axis determination; cellular rearrangement and germ layer establishment; as well as the formation of the first tissue domains. The developing eggs and embryos of medaka (Oryzias latipes) and zebrafish (Danio rerio) have for many decades been a favorite choice of investigators attempting to visualize Ca2+ signaling events. In this short review, we have attempted to catalog and present a comparative study of the developmental Ca2+ signals recorded in these most amenable of vertebrate models.  相似文献   

7.
Fertilization triggers cytosolic Ca(2+) oscillations that activate mammalian eggs and initiate development. Extensive evidence demonstrates that Ca(2+) is released from endoplasmic reticulum stores; however, less is known about how the increased Ca(2+) is restored to its resting level, forming the Ca(2+) oscillations. We investigated whether mitochondria also play a role in activation-associated Ca(2+) signaling. Mitochondrial dysfunction induced by the mitochondrial uncoupler FCCP or antimycin A disrupted cytosolic Ca(2+) oscillations, resulting in sustained increase in cytosolic Ca(2+), followed by apoptotic cell death. This suggests that functional mitochondria may participate in sequestering the released Ca(2+), contributing to cytosolic Ca(2+) oscillations and preventing cell death. By centrifugation, mouse eggs were stratified and separated into fractions containing both endoplasmic reticulum and mitochondria and fractions containing endoplasmic reticulum with no mitochondria. The former showed Ca(2+) oscillations by activation, whereas the latter exhibited sustained elevation in cytosolic Ca(2+) but no Ca(2+) oscillations, suggesting that mitochondria take up released cytosolic Ca(2+). Further, using Rhod-2 for detection of mitochondrial Ca(2+), we found that mitochondria exhibited Ca(2+) oscillations, the frequency of which was not different from that of cytosolic Ca(2+) oscillations, indicating that mitochondria are involved in Ca(2+) signaling during egg activation. Therefore, we propose that mitochondria play a crucial role in Ca(2+) signaling that mediates egg activation and development, and apoptotic cell death.  相似文献   

8.
Visualization of endogenous BMP signaling during Xenopus development   总被引:1,自引:0,他引:1  
Abstract The TGF-β superfamily of growth factors is known to transmit signals to the nucleus mainly through the Smads, intracellular signaling components that are highly conserved from nematodes to humans. The signaling activity of the Smads is regulated by their ligand-stimulated phosphorylation through Ser/Thr kinase receptors. Here, to examine the in vivo role of BMP, we investigated the spatio-temporal activation of BMP-regulated signals during Xenopus development, using a polyclonal antibody that specifically recognizes the phosphorylated form of BMP-regulated Smads. BMP signaling was observed uniformly in embryos as early as stage 7, but was restricted to the ventral side of the embryo at the late blastula stage, supporting the proposed role of BMP4 as a ventralizing factor in Xenopus embryos. In addition, localized staining was detected in several developing organs, consistent with the predicted function of BMP family members in organogenesis.  相似文献   

9.
10.
心肌细胞钙信号研究进展   总被引:4,自引:0,他引:4  
Zang WJ  Yu XJ  Zang YM 《生理科学进展》1999,30(2):141-143
近年自激光共聚焦显微镜使用以来,结合膜片钳技术及分子生物学方法,在心肌细胞内的钙信号种类以及在心脏兴奋-收缩偶联研究方面取得了突破性进展。本文介绍了心肌细胞的钙信号研究进展,包括在心肌细胞内可以观察到的钙闪烁,钙微粒,钙波以及由心肌细胞膜上电除极而诱发的瞬时性钙增高等几种心脏细胞内钙变化的形式,意义以及局部调控兴奋-收给偶联的机制。  相似文献   

11.
Somites give rise to a number of different embryonic cell types, including the precursors of skeletal muscle populations. The lateral aspect of amniote and fish somites have been shown to give rise specifically to hypaxial muscle, including the appendicular muscle that populates fins and limbs. We have investigated the morphogenetic basis for formation of specific hypaxial muscles within the zebrafish embryo and larvae. Transplantation experiments have revealed a developmentally precocious commitment of cells derived from pectoral fin level somites to forming hypaxial and specifically appendicular muscle. The fate of transplanted somites cannot be over-ridden by local inductive signals, suggesting that somitic tissue may be fixed at an early point in their developmental history to produce appendicular muscle. We further show that this restriction in competence is mirrored at the molecular level, with the exclusive expression of the receptor tyrosine kinase met within somitic regions fated to give rise to appendicular muscle. Loss-of-function experiments reveal that Met and its ligand, hepatocyte growth factor, are required for the correct morphogenesis of the hypaxial muscles in which met is expressed. Furthermore, we demonstrate a requirement for Met signaling in the process of proneuromast deposition from the posterior lateral line primordia.  相似文献   

12.
When aequorin is microinjected into cleavage-stage zebrafish embryos, it is largely used up by ~24 hours. Thus, it is currently not possible to image Ca(2+) signals from later stages of zebrafish development using this approach. We have, therefore, developed protocols to express apoaequorin, i.e., the protein component of aequorin, transiently in zebrafish embryos and then reconstitute intact aequorin in vivo by loading the coelenterazine co-factor into the embryos separately. Two types of apoaequorin mRNA, aeq-mRNA and aeq::EGFP-mRNA, the latter containing the enhanced green fluorescent protein (EGFP) sequence, were in vitro transcribed and when these were microinjected into embryos, they successfully translated apoaequorin and a fusion protein of apoaequorin and EGFP (apoaequorin-EGFP), respectively. We show that aeq::EGFP -mRNA was more toxic to embryos than equivalent amounts of aeq-mRNA. In addition, in an in vitro reconstitution assay, apoaequorin-EGFP produced less luminescence than apoaequorin, after reconstitution with coelenterazine and with the addition of Ca(2+). Furthermore, when imaging intact coelenterazine-loaded embryos that expressed apoaequorin, Ca(2+ )signals from ~2.5 to 48 hpf were observed, with the spatio-temporal pattern of these signals up to 24 hpf, being comparable to that observed with aequorin. This transient aequorin expression approach using aeq-mRNA provides a valuable tool for monitoring Ca(2+ )signaling during the 2448 hpf period of zebrafish development. Thus, it effectively extends the aequorin-based Ca(2+) imaging window by an additional 24 hours.  相似文献   

13.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

14.
15.
Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ± 5% of the initial value with a half time of 36 ± 5 s and recovered to 86 ± 4% after 4 min. Intracellular phosphate concentration ([P(i)]) was measured by (31)P-NMR on perchloric acid extracts of muscles. [P(i)] increased during fatigue from 7.6 ± 1.7 to 16.0 ± 1.6 mmol/kg muscle wet wt and returned to control during recovery. Intracellular Ca(2+) was measured with cameleons whose plasmids had been transfected in the muscle 2 wk before the experiment. Yellow cameleon 2 was used to measure myoplasmic Ca(2+), and D1ER was used to measure sarcoplasmic reticulum (SR) Ca(2+). The myoplasmic Ca(2+) during tetani declined steadily during the period of fatigue and showed complete recovery over 4 min. The SR Ca(2+) also declined monotonically during fatigue and showed a partial recovery with rest. These results show that the initial phase of force decline is accompanied by a rise in [P(i)] and a reduction in the tetanic myoplasmic Ca(2+). We suggest that both changes contribute to the fatigue. A likely cause of the decline in tetanic myoplasmic Ca(2+) is precipitation of CaP(i) in the SR.  相似文献   

16.
17.
Characterization of vascular mural cells during zebrafish development   总被引:1,自引:0,他引:1  
Development and maturation of the nascent cardiovascular system requires the recruitment of mural cells (MCs) around the vascular tree in a process called vascular myogenesis. Understanding the origin and development of vascular MCs has been hampered by difficulties in observing these cells in vivo and performing defined genetic and experimental manipulations in available model organisms. Here, we investigate the origin of vascular MCs using molecular and genetic tools in zebrafish. We show that vascular MCs are present around the lateral dorsal aortae (LDA) and anterior mesenteric arteries (AMA) of developing animals, and that they also contribute to the outflow tract of the developing heart and ventral aorta (VA). Genetic data indicate that the vascular MCs of the LDA and AMA do not arise from blood or endothelial progenitors but from other derivatives of the lateral plate mesoderm. We further show that zebrafish vascular MCs share many of the morphological, molecular and functional characteristics of vascular smooth muscle cells and pericytes found in higher vertebrates. These data establish the zebrafish as a useful cellular and genetic model to study vascular myogenesis as well as tumor angiogenesis and other MC-associated diseases.  相似文献   

18.
19.
Genetic analysis of melanophore development in zebrafish embryos   总被引:10,自引:0,他引:10  
Vertebrate pigment cells are derived from neural crest, a tissue that also forms most of the peripheral nervous system and a variety of ectomesenchymal cell types. Formation of pigment cells from multipotential neural crest cells involves a number of common developmental processes. Pigment cells must be specified; their migration, proliferation, and survival must be controlled and they must differentiate to the final pigment cell type. We previously reported a large set of embryonic mutations that affect pigment cell development from neural crest (R. N. Kelsh et al., 1996, Development 123, 369-389). Based on distinctions in pigment cell appearance between mutants, we proposed hypotheses as to the process of pigment cell development affected by each mutation. Here we describe the cloning and expression of an early zebrafish melanoblast marker, dopachrome tautomerase. We used this marker to test predictions about melanoblast number and pattern in mutant embryos, including embryos homozygous for mutations in the colourless, sparse, touchdown, sunbleached, punkt, blurred, fade out, weiss, sandy, and albino genes. We showed that in homozygous mutants for all loci except colourless and sparse, melanoblast number and pattern are normal. colourless mutants have a pronounced decrease in melanoblast cell number from the earliest stages and also show poor melanoblast differentiation and migration. Although sparse mutants show normal numbers of melanoblasts initially, their number is reduced later. Furthermore, their distribution indicates a defect in melanoblast dispersal. These observations permit us to refine our model of the genetic control of melanophore development in zebrafish embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号