共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Campo GM Avenoso A Campo S Nastasi G Traina P D'Ascola A Calatroni A 《Experimental biology and medicine (Maywood, N.J.)》2008,233(6):741-752
Activation of nuclear factor kappaB (NF-kappaB) and caspases may greatly amplify inflammation and cell damage in addition to that directly exerted by free radicals. Since reactive oxygen species (ROS) are involved in acute pancreatitis, we studied whether the administration of chondroitin-4-sulphate (C4S), in addition to its antioxidant activity, was able to modulate NF-kappaB and caspase activation in an experimental model of caerulein-induced acute pancreatitis in mice. Hyperstimulating doses of caerulein (50 microg/ kg), five injections per mouse given at hourly intervals produced the following: high serum lipase and amylase activity; lipid peroxidation, evaluated by 8-isoprostane concentrations; loss of antioxidant defenses such as glutathione reductase (GR) activity; NF-kappaB activation and loss of cytoplasmic IkappaBalpha protein; increases in tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), caspase-3, and caspase-7 gene expression and their related protein; accumulation and activation of neutrophils in the damaged tissue, evaluated by elastase (ELA) determination; and pancreatic injury, evaluated by histologic analysis. Pretreatment of mice with different doses of C4S, given 1 hr before caerulein injections and 1 and 2 hrs after the last caerulein injection, reduced lipid peroxidation, inhibited NF-kappaB translocation and cytoplasmic IkappaBalpha protein loss, decreased TNF-alpha, IL-6, and caspase gene expression and their related protein levels, limited endogenous antioxidant depletion, and reduced tissue neutrophils accumulation and tissue damage. Since molecules with antioxidant activity can block NF-kappaB and apoptosis activation, we suggest that C4S administration is able to block NF-kappaB and caspase activation by reducing the oxidative burst. 相似文献
3.
4.
5.
6.
Obesity has been implicated in several diseases, including cancer; however, the relationship of obesity and susceptibility to ultraviolet (UV) radiation-caused skin diseases has not been investigated. As UV-induced oxidative stress has been implicated in several skin diseases, we assessed the role of obesity on UVB-induced oxidative stress in genetically obese Lep(ob)/Lep(ob) (leptin-deficient) mice. Here, we report that chronic exposure to UVB (120 mJ/cm(2)) resulted in greater oxidative stress in the skin of obese mice in terms of higher levels of H(2)O(2) and NO production, photo-oxidative damage of lipids and proteins, and greater depletion of antioxidant defense enzymes, like glutathione, glutathione peroxidase, and catalase. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of UVB on these pathways in obese mice. Exposure of obese mice to UVB resulted in phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family. Compared to wild-type mice, the obese mice exhibited higher levels of phosphorylation of these proteins, greater activation of NF-kappaB/p65, and higher levels of circulating proinflammatory cytokines, including TNF-alpha, IL-1beta and IL-6, on UVB irradiation. Taking these results together, our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced oxidative stress and therefore may be a risk factor for skin diseases associated with UVB-induced oxidative stress. 相似文献
7.
Oxidative stress induced by hydrogen peroxide (H2O2) may contribute to the pathogenesis of ischemic-reperfusion injury in the heart. For the purpose of investigating directly the injury potential of H2O2 on heart muscle, a cellular model of H2O2-induced myocardial oxidative stress was developed. This model employed primary monolayer cultures of intact, beating neonatal-rat cardiomy-ocytes and discrete concentrations of reagent H2O2 in defined, supplement-free culture medium. Cardiomyocytes challenged with H2O2 readily metabolized it such that the culture content of H2O2 diminished over time, but was not depleted. The consequent H2O2-induced oxidative stress caused lethal sarcolemmal disruption (as measured by lactate dehydrogenase release), and cardiomyocyte integrity could be preserved by catalase. During oxidative stress, a spectrum of cellular derangements developed, including membrane phospholipid peroxidation, thiol oxidation, consumption of the major chain-breaking membrane antiperoxidant (α-tocopherol), and ATP loss. No net change in the protein or phospholipid contents of cardiomyocyte membranes accompanied H2O2-induced oxidative stress, but an increased turnover of these membrane constituents occurred in response to H2O2. Development of lethal cardiomyocyte injury during H2O2-induced oxidative stress did not require the presence of H2O2 itself; a brief “pulse” exposure of the cardiomyocytes to H2O2 was sufficient to incite the pathogenic mechanism leading to cell disruption. Cardiomyocyte disruption was dependent upon an intracellular source of redox-active iron and the iron-dependent transformation of internalized H2O2 into products (e.g., the hydroxyl radical) capable of initiating lipid peroxidation, since iron chelators and hydroxyl-radical scavengers were cytoprotective. The accelerated turnover of cardiomyocyte-membrane protein and phospholipid was inhibited by antiperoxidants, suggesting that the turnover reflected molecular repair of oxidized membrane constituents. Likewise, the consumption of α-tocopherol and the oxidation of cellular thiols appeared to be epiphenomena of peroxidation. Antiperoxidant interventions coordinately abolished both H2O2-induced lipid peroxidation and sarcolemmal disruption, demonstrating that an intimate pathogenic relationship exists between sarcolemmal peroxidation and lethal compromise of cardiomyocyte integrity in response to H2O2-induced oxidative stress. Although sarcolemmal peroxidation was causally related to cardiomyocyte disruption during H2O2-induced oxidative stress, a nonperoxidative route of H2O2 cytotoxicity was also identified, which was expressed in the complete absence of cardiomyocyte-membrane peroxidation. The latter mode of H2O2-induced cardiomyocyte injury involved ATP loss such that membrane peroxidation and cardiomyocyte disruption on the one hand and cellular de-energization on the other could be completely dissociated. The cellular pathophysiology of H2O2 as a vectorial signal for cardiomyocyte necrosis that “triggers” irreversible peroxidative disruption of the sarcolemma has implications regarding potential mechanisms of oxidative injury in the postischemic heart. 相似文献
8.
Schmidt C Peng B Li Z Sclabas GM Fujioka S Niu J Schmidt-Supprian M Evans DB Abbruzzese JL Chiao PJ 《Molecular cell》2003,12(5):1287-1300
9.
10.
Tyagi N Sedoris KC Steed M Ovechkin AV Moshal KS Tyagi SC 《American journal of physiology. Heart and circulatory physiology》2005,289(6):H2649-H2656
Hyperhomocysteinemia decreases vascular reactivity and is associated with cardiovascular morbidity and mortality. However, pathogenic mechanisms that increase oxidative stress by homocysteine (Hcy) are unsubstantiated. The aim of this study was to examine the molecular mechanism by which Hcy triggers oxidative stress and reduces bioavailability of nitric oxide (NO) in cardiac microvascular endothelial cells (MVEC). MVEC were cultured for 0-24 h with 0-100 microM Hcy. Differential expression of protease-activated receptors (PARs), thioredoxin, NADPH oxidase, endothelial NO synthase, inducible NO synthase, neuronal NO synthase, and dimethylarginine-dimethylaminohydrolase (DDAH) were measured by real-time quantitative RT-PCR. Reactive oxygen species were measured by using a fluorescent probe, 2',7'-dichlorofluorescein diacetate. Levels of asymmetric dimethylarginine (ADMA) were measured by ELISA and NO levels by the Griess method in the cultured MVEC. There were no alterations in the basal NO levels with 0-100 microM Hcy and 0-24 h of treatment. However, Hcy significantly induced inducible NO synthase and decreased endothelial NO synthase without altering neuronal NO synthase levels. There was significant accumulation of ADMA, in part because of reduced DDAH expression by Hcy in MVEC. Nitrotyrosine expression was increased significantly by Hcy. The results suggest that Hcy activates PAR-4, which induces production of reactive oxygen species by increasing NADPH oxidase and decreasing thioredoxin expression and reduces NO bioavailability in cultured MVEC by 1) increasing NO2-tyrosine formation and 2) accumulating ADMA by decreasing DDAH expression. 相似文献
11.
Mechanisms of persistent NF-kappaB activation by HTLV-I tax 总被引:1,自引:0,他引:1
Human T cell leukemia virus type I (HTLV-I) is the causative agent of a fatal malignancy known as adult T cell leukemia (ATL). The HTLV-I Tax protein is thought to play a significant role in the initiation and pathogenesis of HTLV-I-mediated disease. Tax is a potent oncogene that deregulates cellular gene expression by persistently activating signaling pathways such as NF-kappaB. Tax activation of NF-kappaB is critical for the immortalization and survival of HTLV-I-infected T cells. In this review, we describe recent insights into the mechanisms employed by Tax to activate the canonical and noncanonical NF-kappaB signaling pathways. The adaptor function of Tax appears to be a common and important mechanism for the pathological activation of both NF-kappaB pathways. 相似文献
12.
Renal ischemic/reperfusion injury in vivo results in a significant increase of acute renal failure (ARF) and death. Nevertheless, there are many limitations in using in vivo models of renal ischemic injury to elucidate the detailed mechanisms of renal injury. Adenosine triphosphate (ATP), an extracellular signal, has been shown to be an important factor in regulation of epithelial cell function. Thus, the present study was performed to establish in vitro ischemic model using primary cultured rabbit renal proximal tubule cells (PTCs) and to examine the effect of ATP in this model. We established an in vitro model of ischemic injury, causing severe depletion of intracellular ATP by using the combination of a mitochondrial respiration inhibitor (antimycin A), non-metabolizable glucose analog (2-deoxyglucose), and calcium ionophore (A23187) in PTCs. Indeed, this ischemic injury significantly increased LDH release, a marker of structural damage, and ATP blocked ischemic injury-induced LDH release. 2-Methylthio-ATP and ATP-gamma-S (P2Y purinoceptor agonists) also blocked ischemic injury-induced LDH release, whereas AMP-CPP (P2X purinoceptor agonist) did not block it. In experiments to examine the relationship between ischemic injury and NF-kappaB activation, ischemic injury increased NF-kappaB translocation, DNA binding activity, and CAT activity. On the other hand, ATP, ATP-gamma-S, or 2-methylthio-ATP protected ischemic injury-induced NF-kappaB activation. These results suggest that the protective effect of ATP on ischemic injury is, in part, related to inhibition of NF-kappaB activation via P2Y receptor in PTCs. 相似文献
13.
Ozone-induced oxidative stress: Mechanisms of action and reaction 总被引:27,自引:0,他引:27
In this review we explore several models which might explain ozone (O3 )-induced injury to plant foliage. Ozone enters the cell through the wall and plasma membrane where active oxygen species are generated. If the concentration of O3 is very high, unregulated cell death will occur. Alternatively, the active oxygen species, or succeeding reaction products, may serve as elicitors of regulated plant responses. These regulated responses include the induction of ethylene which could serve as a primary signal for—or a facilitator of—subsequent responses. The role of regulated suppression of photosynthetic genes and induction of chitinases and β-1,3-glucanase in programmed cell death is explored. Induction of antioxidants, enzymes of lignification and glutathione- S -transferase are discussed in the context of O3 -induced cell repair or cell protection. A second model is postulated to explain induction of accelerated foliar senescence by low levels of O3 . The notion that O3 -induced elicitation of responses in the nucleus might lead to increased oxidative stress in the chloroplast is considered as a mechanism for accelerating the rate of degradation of ribulose-1,5-bisphosphate car-boxylase/oxygenase (Rubisco). The mechanisms by which O3 induces loss of Rubisco, and the relationship to accelerated foliar senescence are discussed. 相似文献
14.
Solar ultraviolet (UV) radiation-induced oxidative stress has been implicated in various skin diseases. Here, we report the photoprotective effect of grape seed proanthocyanidins (GSPs) on UV-induced oxidative stress and activation of mitogen-activated protein kinase (MAPK) and NF-kappaB signaling pathways using normal human epidermal keratinocytes (NHEK). Treatment of NHEK with GSPs inhibited UVB-induced hydrogen peroxide (H2O2), lipid peroxidation, protein oxidation, and DNA damage in NHEK and scavenged hydroxyl radicals and superoxide anions in a cell-free system. GSPs also inhibited UVB-induced depletion of antioxidant defense components, such as glutathione peroxidase, catalase, superoxide dismutase, and glutathione. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of GSPs on these pathways. Treatment of NHEK with GSPs inhibited UVB-induced phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family at the various time points studied. As UV-induced H2O2 plays a major role in activation of MAPK proteins, NHEK were treated with H2O2 with or without GSPs and other known antioxidants, viz. (-)-epigallocatechin-3-gallate, silymarin, ascorbic acid, and N-acetylcysteine. It was observed that H2O2-induced phosphorylation of ERK1/2, JNK, and p38 was decreased by these antioxidants. Under identical conditions, GSPs also inhibited UVB-induced activation of NF-kappaB/p65, which was mediated through inhibition of degradation and activation of IkappaBalpha and IKKalpha, respectively. Together, these results suggest that GSPs could be useful in the attenuation of UV-radiation-induced oxidative stress-mediated skin diseases in human skin. 相似文献
15.
Fiorillo C Becatti M Pensalfini A Cecchi C Lanzilao L Donzelli G Nassi N Giannini L Borchi E Nassi P 《Free radical biology & medicine》2008,45(6):839-846
In this study we explored the effects of curcumin in cardiac cells subjected to a protocol simulating ischemia-reperfusion (IR). Curcumin (10 microM) was administered before ischemia (pretreatment) or at the moment of reperfusion (posttreatment) and its effects were compared to those produced by a reference antioxidant (Trolox) with an equal antioxidant capacity. IR cardiac cells showed clear signs of oxidative stress, impaired mitochondrial activity, and a marked development of both necrotic and apoptotic processes; at the same time, increases in NF-kappaB nuclear translocation and JNK phosphorylation were observed. Curcumin pretreatment was revealed to be the most effective in attenuating all these modifications and, in particular, in reducing the death of IR cells. This confirms that the protective effect of curcumin is not related simply to its antioxidant properties but involves other mechanisms, notably interactions in the NF-kappaB and JNK pathways. These findings suggest that curcumin administration, in particular before the hypoxic challenge, represents a promising approach to protecting cardiac cells against IR injury. In this scenario our results point out the importance of the chronology for the outcome of the treatment and provide a differential valuation of the degree of protection that curcumin can exert by its antioxidant activity or by other mechanisms. 相似文献
16.
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing two or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSB s is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA . However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSB s and oxidative stress.Key words: ATM, DNA repair, double-strand break, oxidative stress, ROS 相似文献
17.
Han KJ Su X Xu LG Bin LH Zhang J Shu HB 《The Journal of biological chemistry》2004,279(15):15652-15661
Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IkappaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF. 相似文献
18.
Mechanisms of aging: an appraisal of the oxidative stress hypothesis 总被引:25,自引:0,他引:25
The main purpose of this article is to provide a critical overview of the currently available evidence bearing on the validity of the oxidative stress hypothesis of aging, which postulates that senescence-associated attenuations in physiological functions are caused by molecular oxidative damage. Several lines of correlative evidence support the predictions of the hypothesis, e.g., macromolecular oxidative damage increases with age and tends to be associated with life expectancy of organisms. Nevertheless, a direct link between oxidative stress and aging has not as yet been established. Single gene mutations have been reported to extend the life spans of lower organisms, such as nematodes and insects; however, such prolongations of chronological clock time survival are usually associated with decreases in the rate of metabolism and reproductive output without affecting the metabolic potential, i.e., the total amount of energy consumed during life. Studies on genetic manipulations of the aging process have often been conducted on relatively short-lived strains that are physiologically weak, whereby life-span extensions can not be unambiguously assigned to a slowing effect on the rate of aging. It is concluded that although there is considerable evidence implicating oxidative stress in the aging process, additional evidence is needed to clearly define the nature of the involvement. 相似文献
19.
20.
Liu X Ren Z Zhan R Wang X Wang X Zhang Z Leng X Yang Z Qian L 《Cell stress & chaperones》2009,14(3):311-319
Oxidative stress is one of the main causes of myocardial injury, which is associated with cardiomyocyte death. Mitochondria
play a key role in triggering the necrosis and apoptosis pathway of cardiomyocytes under oxidative stress. Although prohibitin
(PHB) has been acknowledged as a mitochondrial chaperone, its functions in cardiomyocytes are poorly characterized. The present
research was designed to investigate the cardioprotective role of PHB in mitochondria. Oxidative stress can increase the PHB
content in mitochondria in a time-dependent manner. Overexpression of PHB in cultured cardiomyocytes by transfection of recombinant
adenovirus vector containing PHB sense cDNA resulted in an increase of PHB in mitochondria. Compared with the non-transfection
cardiomyocytes, PHB overexpression could protect the mitochondria from oxidative stress-induced injury. The mitochondria-mediated
apoptosis pathway was consistently suppressed in PHB-overexpressed cardiomyocytes after hydrogen peroxide (H2O2) treatment, including a reduced change in mitochondrial membrane permeability transition and an inhibited release of cytochrome
c from mitochondria to cytoplasma. As a result, the oxidative stress-induced cardiomyocyte apoptosis was suppressed. These
data indicated that PHB protected the cardiomyocytes from oxidative stress-induced damage, and that increasing PHB content
in mitochondria constituted a new therapeutic target for myocardium injury.
XiaoHua Liu and Zhe Ren contributed equally to this work.
● Prohibitin is an evolutionarily conserved and ubiquitously expressed protein involved in mitochondrial structure, function,
and inheritance whose function in cardiomyocyte is not known. In this study, we found oxidative stress could induce increased
expression in cardiomyocytes and mitochondrial translocation of PHB, and PHB can protect against oxidative stress in cultured
neonatal cardiomyocyte. 相似文献