首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dibromothymoquinone on chlorophyll fluorescence was studied in Chlamydomonas reinhardtii cells using PAM and PEA fluorometers. Dibromothymoquinone was shown to affect differently control cells incubated in complete medium and S-starved cells. The fluorescence yield in the control suspension considerably increased in the presence of the inhibitor. Presumably, this can be due to inactivation of protein kinase, as a result of which part of light-harvesting complex II that could have diffused from the stacking zone of the membrane into the lamellar zone towards photosystem I remains close to photosystem II. In S-starved cells, whose photosynthetic apparatus is in state 2, the fluorescence level declines in the presence of dibromothymoquinone. The JIP testing of induction curves (O-J-I-P fluorescence transient) suggests that dibromothymoquinone inhibits both light-harvesting complex II kinase and photosynthetic electron transport when added to the control, while in the starved cells it acts predominantly as an electron acceptor.  相似文献   

2.
Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast.  相似文献   

3.
We created a Qo pocket mutant by site-directed mutagenesis of the chloroplast petD gene in Chlamydomonas reinhardtii. We mutated the conserved PEWY sequence in the EF loop of subunit IV into PWYE. The pwye mutant did not grow in phototrophic conditions although it assembled wild-type levels of cytochrome b6f complexes. We demonstrated a complete block in electron transfer through the cytochrome b6f complex and a loss of plastoquinol binding at Qo. The accumulation of cytochrome b6f complexes lacking affinity for plastoquinol enabled us to investigate the role of plastoquinol binding at Qo in the activation of the light-harvesting complex II (LHCII) kinase during state transitions. We detected no fluorescence quenching at room temperature in state II conditions relative to that in state I. The quantum yield spectrum of photosystem I charge separation in the two state conditions displayed a trough in the absorption region of the major chlorophyll a/b proteins, demonstrating that the cells remained locked in state I. 33Pi labeling of the phosphoproteins in vivo demonstrated that the antenna proteins remained poorly phosphorylated in both state conditions. Thus, the absence of state transitions in the pwye mutant demonstrates directly that plastoquinol binding in the Qo pocket is required for LHCII kinase activation.  相似文献   

4.
We have used a new method to extensively modify the redox state of the plastoquinone pool in Chlamydomonas reinhardtii intact cells. This was achieved by an anaerobic treatment that inhibits the chlororespiratory pathway recently described by P. Bennoun (Proc. Natl. Acad. Sci. USA, 1982, 79:4352-4356). A state I (plus 3,4-dichlorophenyl-1,1- dimethylurea) leads to anaerobic state transition induced a decrease in the maximal fluorescence yield at room temperature and in the FPSII/FPSI ratio at 77 degrees K, which was three times larger than in a classical state I leads to state II transition. The fluorescence changes observed in vivo were similar in amplitude to those observed in vitro upon transfer to the light of dark-adapted, broken chloroplasts incubated in the presence of ATP. We then compared the phosphorylation pattern of thylakoid polypeptides in C. reinhardtii in vitro and in vivo using gamma-[32P]ATP and [32P]orthophosphate labeling, respectively. The same set of polypeptides, mainly light-harvesting complex polypeptides, was phosphorylated in both cases. We observed that this phosphorylation process is reversible and is mediated by the redox state of the plastoquinone pool in vivo as well as in vitro. Similar changes of even larger amplitude were observed with the F34 mutant intact cells lacking in photosystem II centers. The presence of the photosystem II centers is then not required for the occurrence of the plastoquinone-mediated phosphorylation of light-harvesting complex polypeptides.  相似文献   

5.
Red algae are well suited to study the effects of iron deficiency on light-harvesting complex for photosystem I (LHCI), since they are totally devoid of light-harvesting complex for photosystem II (LHCII). Iron starvation results in a reduction of the pigment content, an increase of the fluorescence yield and a new emission band at 705 nm in the 77 K fluorescence emission spectra. These changes reflect the accumulation of uncoupled, aggregated LHCI in iron-depleted cells. Reconnection of LHCI to de novo synthesized reaction center I (RCI) is the first event, which takes place after iron addition. The changes in the aggregation state of LHCI are likely to occur also in brown and green algae.  相似文献   

6.
《BBA》1985,809(2):277-283
The reorganization of the light-harvesting antenna in the thylakoid membranes upon phosphorylation of some of its apoproteins was further characterized in vivo using the green algae Chlamydomonas reinhardtii. To this end we have studied light-to-dark transitions on intact cells placed in the anaerobic state using the F34 mutant strain which lacks PS II centers. We show that the 50% decrease in fluorescence yield in such transitions is accompanied by a 50% increase in PS I antenna size. The half-times of the kinetics of the fluorescence changes in the dark-to-light and light-to-dark transitions are of 320 and 120 s, respectively. The rate-limiting steps in these transitions are attributed to the dephosphorylation and phosphorylation processes themselves rather than to the activation of the kinase or to the diffusion of the phosphorylated complexes in the thylakoid membrane. Accordingly, the changes in phosphorylation of three of the main phosphopolypeptides occur with the same kinetics as those of the fluorescence changes. Different phosphorylation kinetics are observed for two phosphopolypeptides which are, however, also part of the light-harvesting complexes. Possible heterogeneities in the kinase enzymatic activities are discussed. The peculiar status of the phosphopolypeptide D2, associated with the PS II center, is described.  相似文献   

7.
In response to changing light quantity and quality, photosynthetic organisms perform state transitions, a process which optimizes photosynthetic yield and mitigates photo-damage. The serine/threonine-protein kinase STN7 phosphorylates the light-harvesting complex of photosystem II (PSII; light-harvesting complex II), which then migrates from PSII to photosystem I (PSI), thereby rebalancing the light excitation energy between the photosystems and restoring the redox poise of the photosynthetic electron transport chain. Two conserved cysteines forming intra- or intermolecular disulfide bonds in the lumenal domain (LD) of STN7 are essential for the kinase activity although it is still unknown how activation of the kinase is regulated. In this study, we show lumen thiol oxidoreductase 1 (LTO1) is co-expressed with STN7 in Arabidopsis (Arabidopsis thaliana) and interacts with the LD of STN7 in vitro and in vivo. LTO1 contains thioredoxin (TRX)-like and vitamin K epoxide reductase domains which are related to the disulfide-bond formation system in bacteria. We further show that the TRX-like domain of LTO1 is able to oxidize the conserved lumenal cysteines of STN7 in vitro. In addition, loss of LTO1 affects the kinase activity of STN7 in Arabidopsis. Based on these results, we propose that LTO1 helps to maintain STN7 in an oxidized active state in state 2 through redox interactions between the lumenal cysteines of STN7 and LTO1.  相似文献   

8.
A photosystem II core complex from spinach exhibiting high rates of electron transport was obtained rapidly and in high yield by treatment of a Tris-extracted, O2-evolving photosystem II preparation with the detergent dodecyl-beta-D-maltoside. The core complex was essentially free of light-harvesting chlorophyll-protein and photosystem I polypeptides, and was highly enriched in the polypeptides associated with the photosystem II reaction center (45 and 49 kDa), cytochrome b559, and three polypeptides in the region 32-34 kDa. The photosystem II core complex contained two chlorophyll-proteins which had a slightly higher apparent molecular mass than CPa-1 and CPa-2. Additionally, a high-molecular-mass chlorophyll-protein complex termed CPa* was observed, which exhibited a low fluorescence yield when illuminated with ultraviolet light. This observation suggests that CPa* contains a functionally efficient quencher of chlorophyll fluorescence, possibly P680.  相似文献   

9.
The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light-harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used the wild-type and three mutant strains of the green alga Chlamydomonas reinhardtii—locked in state I (stt7), lacking the photosystem II outer antennae (bf4) or accumulating low amounts of cytochrome b6f complex (A-AUU)—and measured electron flow though the cytochrome b6f complex, oxygen evolution rates and fluorescence emission during state transitions. The results demonstrate that the transition from state 1 to state 2 induces a switch from linear to cyclic electron flow in this alga and reveal a strict cause–effect relationship between the redistribution of antenna complexes during state transitions and the onset of cyclic electron flow.  相似文献   

10.
The activity of the protein kinase that phosphorylates the light-harvesting chlorophyll-protein of Photosystem II (LHCP) has been investigated in intact chloroplasts isolated from maize mesophyll cells. Measurements of 32P incorporation into LHCP, ATP concentration, ATPADP ratio, ΔpH, chlorophyll fluorescence and oxygen evolution were made in the presence of different metabolic substrates. Without added substrate a high level of LHCP phosphorylation was observed which was suppressed by addition of oxaloacetate or phosphoglycerate but stimulated by pyruvate. Whereas no correlation was observed between LHCP phosphorylation and adenylate status, a clear effect of redox state on protein kinase activity was observed. A correlation between a highly reduced electron-transfer chain (produced under conditions which favour cyclic electron flow) and the maximum level of protein phosphorylation was observed. The regulation of kinase activity and its dependence on electron transfer and carbon assimilation are discussed.  相似文献   

11.
A study was made of the chlorophyll fluorescence spectra between 100 and 4.2 K of chloroplasts of various species of higher plants (wild strains and chlorophyll b mutants) and of subchloroplast particles enriched in Photosystem I or II. The chloroplast spectra showed the well known emission bands at about 685, 695 and 715--740 nm; the System I and II particles showed bands at about 675, 695 and 720 nm and near 685 nm, respectively. The effect of temperature lowering was similar for chloroplasts and subchloroplast particles; for the long wave bands an increase in intensity occurred mainly between 100 and 50 K, whereas the bands near 685 nm showed a considerable increase in the region of 50--4.2 K. In addition to this we observed an emission band near 680 nm in chloroplasts, the amplitude of which was less dependent on temperature. The band was missing in barley mutant no. 2, which lacks the light-harvesting chlorophyll a/b-protein complex. At 4.7 K the spectra of the variable fluorescence (Fv) consisted mainly of the emission bands near 685 and 695 nm, and showed only little far-red emission and no contribution of the band at 680 nm. From these and other data it is concluded that the emission at 680 nm is due to the light-harvesting complex, and that the bands at 685 and 695 nm are emitted by the System II pigment-protein complex. At 4.2 K, energy transfer from System II to the light-harvesting complex is blocked, but not from the light-harvesting to the System I and System II complexes. The fluorescence yield of the chlorophyll species emitting at 685 nm appears to be directly modulated by the trapping state of the reaction center.  相似文献   

12.
Three distinct states can be identified for cells of the green alga Chlorella vulgaris; State 1 and State 2 obtained by preillumination in far-red and red light, respectively, and the dark state obtained by dark-adaptation. Addition of the inhibitor DCMU to algal cells leads to an initial rapid increase in chlorophyll-a fluorescence reflecting the closure of Photosystem II traps. This, in the case of dark and state-2-adapted algae is followed by a slow light-dependent increase to a fluorescence yield typical of State-1-adapted cells. Measurements of low temperature (77 K) emission spectra indicate that the low fluorescence yields of dark and State-2-adapted algae reflect similar balances in excitation-energy distribution between the two photosystems. In both cases, the balance favours PS I and the slow fluorescence increase seen in the poisoned algae reflects a redressing of this balance in favour of PS II. The low fluorescence yield of State-2-adapted algae is thought to be associated with the phosphorylation of chlorophyll a/b light-harvesting protein (Biochim. Biophys. Acta (1983) 724, 94–103). Measurements of the uncoupler and ATPase sensitivity of the light-dependent increases seen in DCMU-poisoned cells indicate that the low fluorescence yield of dark-adapted algae is of different origin. Evidence is presented showing that the light-driven changes in excitation-energy distribution seen in green algae involve two distinct processes; a low-intensity, wavelenght-independent change reflecting simple light/dark changes and a higher intensity, wavelength-dependent change reflecting State 1/State 2 adaptation. The former changes appear to be associated with changes in the local ionic environment within the algal chloroplast, whilst the latter appear to reflect changes in the phosphorylation state of chlorophyll a/b light-harvesting protein.  相似文献   

13.
A highly purified light-harvesting pigment-protein complex (LHC) was obtained by fractionation of cation-depleted chloroplast membranes using the nonionic detergent, Triton X-100. The isolated LHC had a chlorophyll ab ratio of 1.2 and exhibited no photochemical activity. SDS-polyacrylamide gel electrophoresis of the LHC revealed three polypeptides in the molecular weight classes of 23, 25, and 30 × 103. Antibodies were prepared against the LHC and their specificity was established. The effect of the α-LHC (antibodies to LHC) on salt-mediated changes in PS I and PS II photochemistry, Chl α fluorescence inductions, and 77 °K fluorescence emission spectra was investigated. The results show that: (i) The Mg2+-induced 20% decrease in photosystem I (PS I) quantum yield observed in control chloroplasts was blocked by the presence of the α-LHC antibody, (ii) The Mg2+-induced 70% increase in photosystem II (PS II) quantum yield of control chloroplasts was reduced 35% for plastids in the presence of α-LHC antibody, (iii) The Mg2+-induced increase in room-temperature variable fluorescence was reduced 60% by α-LHC antibody, (iv) The Mg2+-induced increase in the F685F730 emission peak ratio at 77 °K was inhibited 50% in the presence of α-LHC antibody. These results provide direct evidence for the involvement of the light-harvesting complex in cation regulation of energy redistribution between the photosystems. The fact that the α-LHC antibody does not fully block Mg2+-induced PS II increases or chlorophyll fluorescence increases supports the concept that Mg2+ has two mechanisms of action: one effect on energy distribution and a second direct effect on photosystem II centers.  相似文献   

14.
15.
Hou CX  Rintamäki E  Aro EM 《Biochemistry》2003,42(19):5828-5836
A freeze-thaw cycle of isolated thylakoids in darkness in the presence of ascorbate was employed as a novel experimental system to activate the light-harvesting complex (LHC) II kinase. Under these conditions ascorbate reduces Q(A), the primary quinone electron acceptor of photosystem (PS) II, and the subsequent reduction of plastoquinone and the cytochrome (cyt) b(6)f complex results in the activation of the LHCII kinase. Using this activation system, several facets of regulation of LHCII protein phosphorylation were unravelled. (i) Myxothiazol inhibited the activation of LHCII protein phosphorylation, thus being a potent inhibitor of electron flow not only in cyt bc complexes but in darkness also in cyt b(6)f complexes. (ii) Oxygen, the only electron acceptor in darkness, was required for LHCII kinase activation demonstrating that after a full reduction of the cyt b(6)f complex, an additional plastoquinol oxidation cycle in the quinol oxidation (Qo) site is required for LHCII kinase activation. (iii) In the absence of electron flow, when the intersystem electron carriers are reduced, the activated LHCII kinase has a half-life of 40 min, whereas the fully activated LHCII kinase becomes deactivated in a time scale of seconds upon oxidation of the cyt b(6)f complex, indicating that the kinase constantly reads the redox poise of the cyt b(6)f complex. (iv) The LHCII kinase is more tightly bound to the thylakoid membrane than the PS II core protein kinase(s). It is concluded that oxidation of plastoquinol at the Qo site of the reduced cyt b(6)f complex is required for LHCII kinase activation, while rapid reoccupation of the Qo site with plastoquinol is crucial for sustenance of the active state of the LHCII kinase.  相似文献   

16.
In photosynthesis in chloroplasts, control of thylakoid protein phosphorylation by redox state of inter-photosystem electron carriers makes distribution of absorbed excitation energy between the two photosystems self-regulating. During operation of this regulatory mechanism, reduction of plastoquinone activates a thylakoid protein kinase which phosphorylates the light-harvesting complex LHC II, causing a change in protein recognition that results in redistribution of energy to photosystem I at the expense of photosystem II, thus tending to oxidise the reduced plastoquinone pool. These events correspond to the transition from light-state 1 to light-state 2. The reverse transition (to light-state 1) is initiated by transient oxidation of plastoquinone, inactivation of the LHC II kinase, and return of dephosphorylated LHC II from photosystem I to photosystem II, supplying excitation energy to photosystem II and thereby reducing plastoquinone. State 1-state 2 transitions therefore operate by means of redox control of reversible, post-translational modification of pre-existing proteins. A balance in the rates of light utilization by photosystem I and photosystem II can also be achieved, on longer time-scales and between wider limits, by adjustment of the relative quantities, or stoichiometry, of photosystem I and photosystem II. Recent evidence suggests that adjustment of photosystem stoichiometry is also a response to perturbation of the redox state of inter-photosystem electron carriers, and involves specific redox control of de novo protein synthesis, assembly, and breakdown. It is therefore suggested that the same redox sensor initiates these different adaptations by control of gene expression at different levels, according to the time-scale and amplitude of the response. This integrated feedback control may serve to maintain redox homeostasis, and, as a result, quantum yield. Evidence for the components required by such systems is discussed.  相似文献   

17.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

18.
Modulated fluorometry (PAM) was applied for probing the photosynthesis in cells of C. reinhardtii during sulfur deprivation. A significant (up to a fourfold) increase in chlorophyll fluorescence yield (parameters F(o) and F(m)) normalized to chlorophyll concentration was shown for deprived cells. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in PS II of sulfur-deprived cells. Thus, starved cells exhibited a lower deltapH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in reaction centers of PS II, as well as the transition of the photosynthetic apparatus primarily to state 2. However, these changes cannot cause the elevation of chlorophyll fluorescence in the cells under sulfur limitation. The phenomenon observed may be due to a partial dissociation of light-harvesting complexes from reaction centers of PS II and/or dysfunction of the dissipative cycle in PS II with cytochrome b559 as an intermediate.  相似文献   

19.
Picosecond time-resolved fluorescence spectroscopy has been used to investigate the fluorescence emission from wild-type barley chloroplasts and from chloroplasts of the barley mutant, chlorina f-2, which lacks the light-harvesting chlorophyll a/b-protein complex. Cation-controlled regulation of the distribution of excitation energy was studied in isolated chloroplasts at the Fo and Fm levels. It was found that: (a) The fluorescence decay curves were distinctly non-exponential, even at low excitation intensities (less than 2 x 10(14) photons . cm(-2). (b) The fluorescence decay curves could, however, be described by a dual exponential decay law. The wild-type barley chloroplasts gave a short-lived fluorescence component of approximately 140 ps and a long-lived component of 600 ps (Fo) or 1300 ps (Fm) in the presence of Mg2+; in comparison, the mutant barley yielded a short-lived fluorescence component of approx. 50 ps and a long-lived component of 194 ps (Fo) and 424 ps (Fm). (c) The absence of the light-harvesting chlorophyll a/b-protein complex in the mutant results in a low fluorescence quantum yield which is unaffected by the cation composition of the medium. (d) The fluorescence yield changes seen in steady-state experiments on closing Photosystem II reaction centres (Fm/Fo) or on the addition of MgCl2 (+Mg2+/-Mg2+) were in overall agreement with those calculated from the time-resolved fluorescence measurements. The results suggest that the short-lived fluorescence component is partly attributable to the chlorophyll a antenna of Photosystem I, and, in part, to those light-harvesting-Photosystem II pigment combinations which are strongly coupled to the Photosystem I antenna chlorophyll. The long-lived fluorescence component can be ascribed to the light-harvesting-Photosystem II pigment combinations not coupled with the antenna of Photosystem I. In the case of the mutant, the two components appear to be the separate emissions from the Photosystem I and Photosystem II antenna chlorophylls.  相似文献   

20.
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号