首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The cornified envelope is a layer of transglutaminase cross-linked protein that is deposited under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We present the sequence of one of the cornified envelope precursors, a protein with an apparent molecular mass of 210 kD. The 210-kD protein is translated from a 6.5- kb mRNA that is transcribed from a single copy gene. The mRNA was upregulated during suspension-induced terminal differentiation of cultured human keratinocytes. Like other envelope precursors, the 210- kD protein became insoluble in SDS and beta-mercaptoethanol on activation of transglutaminases in cultured keratinocytes. The protein was expressed in keratinizing and nonkeratinizing stratified squamous epithelia, but not in simple epithelia or nonepithelial cells. Immunofluorescence staining showed that in epidermal keratinocytes, both in vivo and in culture, the protein was upregulated during terminal differentiation and partially colocalized with desmosomal proteins. Immunogold EM confirmed the colocalization of the 210-kD protein and desmoplakin at desmosomes and on keratin filaments throughout the differentiated layers of the epidermis. Sequence analysis showed that the 210-kD protein is homologous to the keratin- binding proteins desmoplakin, bullous pemphigoid antigen 1, and plectin. These data suggest that the 210-kD protein may link the cornified envelope to desmosomes and keratin filaments. We propose that the 210-kD protein be named "envoplakin."  相似文献   

2.
SqCC/Y1, a human malignant squamous cell carcinoma, spontaneously differentiates when grown to confluence in delipidized serum-containing medium, as measured by the capacity to form detergent-insoluble cornified cell envelopes. Thus, 30% of SqCC/Y1 cells spontaneously attained the differentiated state after 6 days in culture. Exposure of SqCC/Y1 cells to 30, 100, or 300 nM hydrocortisone increased the number of mature cells, producing a 25, 100, and 225%, respective, increase in the number of differentiated cells over the spontaneous rate of maturation. Retinoic acid at levels of 3-300 nM was inhibitory, causing a 24-85% decrease in the number of differentiated cells. Simultaneous treatment with hydrocortisone and retinoic acid indicated mutual antagonism of the effects of these agents on the formation of cornified envelopes. Since hydrocortisone possesses antiangiogenic (AG), mineralocorticoid (MC) and glucocorticoid (GC) activities, steroids with different degrees of GC, MC, and AG potency were examined for their capacities to induce terminal differentiation. Only steroids with GC activity, such as dexamethasone, hydrocortisone, and RU-28362, were capable of increasing the degree of SqCC/Y1 differentiation and antagonizing the inhibitory effects of retinoic acid on the maturation process. In addition, the GC antagonist, RU-38486, reversed the stimulation of cellular differentiation produced by the glucocorticoids. The findings indicate that GC activity is required for the steroid-induced terminal differentiation of SqCC/Y1 cells.  相似文献   

3.
Involucrin is synthesized in abundance during terminal differentiation of keratinocytes. Involucrin is a substrate for transglutaminase and one of the precursors of the cross-linked envelopes present in the corneocytes of the epidermis and other stratified squamous epithelia. These envelopes make an important contribution to the physical resistance of the epidermis. We have generated mice lacking involucrin from embryonic stem cells whose involucrin gene had been ablated by homologous recombination. These mice developed normally, possessed apparently normal epidermis and hair follicles, and made cornified envelopes that could not be distinguished from those of wild-type mice. No compensatory increase of mRNA for other envelope precursors was observed.  相似文献   

4.
Human placental annexin I and annexin II were shown to be glycosylated by one-dimensional affinity blotting with the lectin concanavalin A, which recognizes D-mannose and D-glucose residues. Further evidence that annexin I and annexin II are glycosylated was provided by the finding that these proteins incorporated D-[2,6-3H]mannose and D-[6-3H]glucose when they were biosynthesized by the human squamous carcinoma cell line SqCC/Y1. Annexin I and annexin II could be rapidly purified from a human placental membrane extract by concanavalin A-Sepharose, which indicated that these proteins contain two biantennary mannosyl residues.  相似文献   

5.
Cross-linked cornified envelopes are cell structures specifically synthesized by terminally differentiating keratinocytes. They are composed of proteins deposited at the cell periphery under the plasma membrane, and can be purified from epidermis by physicochemical extractions. The resulting keratinocyte "shells" are highly insoluble structures devoid of cytoplasmic components. The rigidity of the stratum corneum cell envelope seems to be one of the essential factors contributing to the physical resistance of this most superficial epidermal layer. We studied the purified cell envelopes from human plantar horny layer to determine their antigenic composition and protein distribution. The extraction protocol consisted of four 10-min cycles of boiling in 10 mM Tris-HCl buffer containing 2% SDS and 1% beta-mercaptoethanol. The absence of any extractable proteins persisting in the purified pellets was checked with SDS-PAGE of the sample electroeluates. Indirect immunofluorescence as well as pre- and post-embedding immunogold labeling for electron microscopy revealed the persistence of several keratinocyte antigenic determinants on the purified substrates. The antibodies directed against involucrin, keratin 10, desmoplakin I + II, desmoglein (intracellular epitope), intercellular corneodesmosome proteins, and filaggrin (a considerably weaker reactivity) labeled the cell envelopes according to the ultrastructural localization pattern characteristic for a given antigen. We conclude that the cytoskeletal and desmosomal components become "embedded" in the highly cross-linked cornified envelope structures during the process of keratinocyte terminal differentiation. This underlines the central role of cornified envelopes in the physical resistance of superficial epidermal layers and indicates a possible importance of junctional proteins in this function.  相似文献   

6.
In this study we examined the different aspects of the pathway leading to the differentiation of keratinocytes as a function of time in culture and calcium concentration of the culture medium. Human neonatal foreskin keratinocytes were grown in a serum-free, defined medium containing 0.07, 1.2, or 2.4 mM calcium and assayed for the rate of growth and protein synthesis, involucrin content, transglutaminase activity, and cornified envelope formation at preconfluent, confluent, and postconfluent stages of growth. We observed that keratinocytes grown to postconfluence in all calcium concentrations showed an increased protein/DNA ratio and an increased rate of membrane-associated protein synthesis. Extracellular calcium concentrations did not have a clear influence on these parameters. However, preconfluent and confluent keratinocytes grown in 0.07 mM calcium showed markedly retarded differentiation at all steps, i.e., involucrin synthesis, transglutaminase activity, and cornified envelope formation. Within 1 week after achieving confluence, these keratinocytes began synthesizing involucrin and transglutaminase and developed the ability to form cornified envelopes. Cells grown in 1.2 and 2.4 mM calcium synthesized involucrin and transglutaminase prior to confluence and were fully competent to form cornified envelopes by confluence. Thus external calcium-regulated keratinocyte differentiation is not an all or none phenomenon, but rather it is the rate at which keratinocytes differentiate that is controlled by calcium. We conclude that either or both higher extracellular calcium concentration and the achievement of cell-cell contacts lead to a coordinate increase of at least two precursors--involucrin content and transglutaminase activity--required for cornified envelope formation. We speculate that a critical level of cytosolic calcium, achieved by increased extracellular calcium or by achievement of intercellular communication established by cell-cell contact, may trigger mechanisms required for initiation of keratinocyte differentiation.  相似文献   

7.
Annexin I and annexin II were extracted from human placental membranes with ethylene glycol bis(beta-amino-ethyl ether)-N,N'-tetraacetic acid (EGTA) and purified by high-performance liquid chromatography by measuring their ability to inhibit phospholipase A2 activity in vitro. Neither protein was capable of binding to a DEAE-5PW HPLC column at neutral pH; however, they were resolved through binding to a Mono S column and passage through size-exclusion HPLC columns. Annexin I and its covalently linked dimer (36 and 66 kDa, respectively, by sodium dodecyl sulfate (SDS)-gel electrophoresis) reacted in one-dimensional immunoblots with monoclonal antibodies to annexin I and calpactin II, and with monoclonal and polyclonal antibodies to lipocortin I, confirming that annexin I, calpactin II, and lipocortin I are the same or closely related proteins. Milligram amounts of monomeric annexin I containing negligible amounts of the cross-linked dimeric annexin I were selectively isolated from placental membranes by using buffers containing the sulfhydryl reagent iodoacetic acid. Milligram amounts of cross-linked annexin I were selectively isolated when placental membranes were initially treated with buffers that did not contain iodoacetic acid and then extracted with Triton X-100, suggesting that sulfhydryl-dependent transglutaminase activity contributes to the selective isolation of this protein. A third phospholipase A2-inhibitory protein (35 kDa by SDS-gel electrophoresis) that reacted in immunoblots with monoclonal antibodies to calpactin I and annexin II, indicating their similar identity, was isolated. The procedure employed allows the rapid purification of annexins I and II in milligram amounts from placental membranes within 2 days.  相似文献   

8.
Terminal differentiation of normal and malignant keratinocytes is routinely determined by the ability of these cells to form cornified envelopes after incubation with a calcium ionophore. We have used the human squamous cell carcinoma, SqCC/Y1, to quantify cellular differentiation by the formation of detergent-insoluble protein. The methodology developed employs the metabolic labeling of detergent-insoluble cellular protein with [35S]methionine in the presence of a calcium ionophore. The ratio of filter-retainable radioactivity to that of total cellular protein was shown to be closely correlated to the results obtained by measuring the number of envelope-competent cells when cells were induced to enter a pathway of terminal differentiation in culture by serum deprivation or by treatment with hydrocortisone, and during the inhibition of maturation by either retinoic acid (RA) or epidermal growth factor (EGF). This way of measuring the degree of terminal differentiation of epidermal cells is a relatively simple one that readily allows the simultaneous measurement of multiple samples.  相似文献   

9.
Increases in the intracellular calcium (Cai) levels, induced either by extracellular calcium or by calcium ionophores, stimulate the terminal differentiation of normal human keratinocytes in culture (NHK). Despite extensive differences in phenotypic expression, squamous carcinoma cell lines (SCC lines) display only partial terminal differentiation even in the presence of normal extracellular calcium. Therefore, in this study, we evaluated whether the inability of SCC lines to differentiate normally is due to a defect in achieving adequate levels of Cai. Membrane-bound transglutaminase activity and involucrin levels of the various SCC lines were lower than those of NHK and correlated with their low extent of cornified envelope formation. Ionomycin, a calcium ionophore, acutely increased cornified envelope formation of NHK 60- to 70-fold, but only initiated a 1- to 5-fold increase in SCC lines. Yet resting Cai levels in and the Cai response to various agents of SCC lines were similar or higher than those of NHK. Extracellular calcium evoked a rapid, transient and a slower, sustained increase of Cai. Extracellular ATP increased Cai by a rapid release from intracellular sources. Ionomycin, on the other hand, increased Cai from both intracellular compartments and extracellular sources. Thus, these studies indicate that the abnormalities in differentiation among SCC lines do not appear to involve their calcium-sensing mechanism. An uncoupling of the Cai changes to the synthesis of the precursor molecules required for differentiation may be responsible for the defect in differentiation displayed by these SCC lines.  相似文献   

10.
Summary A431 malignant keratinocytes, although derived from a muco-cutaneous carcinoma of the vulva, fail to achieve terminal epidermal differentiation in culture as shown by their inability to form cornified envelopes. Even after culture in a serum-free medium (MCDB 153) containing no retinoic acid and a high (10−3 M) calcium concentration (conditions known to facilitate epidermal differentiation), the cells do not become competent as shown by the fact that subsequent treatment with a calcium ionophore is unable to provoke the formation of cornified envelopes. Nevertheless, A431 cells are able to synthesize the envelope precursor involucrin. The block in formation of cornified envelopes is thus not due to a lack in involucrin. The results described here suggest that the absence of cross-linking of this molecule is due to a lowered epidermal membrane-bound transglutaminase activity in A431 cells, enhances involucrin accumulation in these cells, although in normal human keratinocytes it stimulates growth and reduces involucrin synthesis. These results suggest that involucrin synthesis is triggered by the arrest of growth. EDITOR'S STATEMENT The A431 cell line has been used extensively in the study of EGF receptors and effects, and recently has been employed in studies of surface membrane receptors for other factors, as well as studies of extracellular matrix synthesis and deposition and tumor promoter activities. The expanding use of A431 cells calls for a more thorough understanding of the cell type it represents and the degree to which it represents a general in vitro model of normal or neoplastic epidermal cells. This article addresses some of these questions.  相似文献   

11.
Elevated transglutaminase activity and formation of cornified envelopes are markers of terminal differentiation in mouse epidermal cells. Epidermal transglutaminase catalyzes cornified envelope formation and in cultured cells is inducible by calcium ion or phorbol ester tumor promoters. Retinoic acid also induces transglutaminase activity but inhibits cross-linked envelope formation. This apparent paradox might be resolved by the observation that the retinoic acid-induced transglutaminase appears to be either a different enzyme or a markedly altered form of the epidermal enzyme. The retinoic acid-induced transglutaminase is soluble in aqueous buffers, is thermolabile at pH 9.0, 37 degrees C, and elutes from an anion exchange column at 0.4 M NaCl. In contrast, the epidermal enzyme is particulate and requires detergent for solubilization, is relatively thermostable, and elutes from the anion exchanger at 0.25 M NaCl. The retinoic acid-induced enzyme is probably identical with the "tissue" transglutaminase present in liver and in other cells. It is proposed that the transglutaminase induced by retinoic acid may play a role in the inhibition by retinoids of calcium and tumor promoter-induced differentiation.  相似文献   

12.
M Simon  H Green 《Cell》1984,36(4):827-834
Cultured keratinocytes, like those in natural squamous epithelia, form submembranous protein envelopes cross-linked by cellular transglutaminase. During the cross-linking, the cytosolic protein involucrin becomes incorporated into the envelope and can no longer be extracted by detergents. We show here that when transglutaminase is activated in cultured keratinocytes, at least six other proteins also become nonextractable. In contrast to involucrin, these proteins are associated with membranes. Two of the proteins (210 and 195 kd) are differentiated products specific to the keratinocyte; like involucrin, they are absent from small keratinocytes and fibroblasts, but appear in larger keratinocytes during the course of their terminal differentiation. The other proteins that become nonextractable cannot be destined exclusively for envelope formation since they are also present in fibroblasts. Transglutaminase is used by the mature (large) keratinocyte to make a detergent-resistant envelope from what appears to be a mixture of differentiation-specific and nonspecific proteins, both membrane-bound and cytosolic.  相似文献   

13.
The human squamous cell carcinoma SqCC/Y1 undergoes spontaneous terminal differentiation in the confluent state. The degree of maturation was markedly increased by glucocorticoids and by both human recombinant and placental lipocortin I. Western analyses demonstrated cellular secretion of lipocortin into the medium. Glucocorticoid-induced maturation was antagonized by a lipocortin I-specific monoclonal antibody, by phospholipase A2 (PLA2), and by arachidonic acid. Induction of the differentiation of SqCC/Y1 cells by lipocortin I was prevented by arachidonic acid. The PLA2 inhibitor, dibromoacetophenone, caused an increase in envelope-competent cells indicating that inhibition of PLA2 results in induction of differentiation. Epidermal growth factor prevented the induction of differentiation by both lipocortin I and by glucocorticoids. The nonsteroidal lipoxygenase/cyclo-oxygenase inhibitor, phenidone, also increased SqCC/Y1 differentiation, suggesting that leukotrienes, thromboxanes, and/or prostaglandins may be involved in lipocortin-mediated regulation of SqCC/Y1 maturation. The findings support a role for lipocortin I in mediating the effects of glucocorticoids on epidermal cell differentiation.  相似文献   

14.
The cytochrome P450 CYP2B19 is a keratinocyte-specific arachidonic acid epoxygenase expressed in the granular cell layer of mouse epidermis. In cultured keratinocytes, CYP2B19 mRNAs are up-regulated coordinately with those of profilaggrin, another granular cell-specific marker. We investigated effects of the CYP2B19 metabolites 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) on keratinocyte transglutaminase activities and cornified cell envelope formation. Keratinocytes were differentiated in vitro in the presence of biotinylated cadaverine. Transglutaminases cross-linked this substrate into endogenous proteins in situ; an enzyme-linked immunosorbent assay was used to quantify the biotinylated proteins. Exogenously added or endogenously formed 14,15-EET increased transglutaminase cross-linking activities in cultured human and mouse epidermal keratinocytes in a modified in situ assay. Transglutaminase activities increased approximately 8-fold (p < or = 0.02 versus mock control) in human keratinocytes transduced with adenovirus particles expressing a 14S,15R-EET epoxygenase (P450 BM3v). The physiological transglutaminase substrate involucrin was preferentially biotinylated in situ, determined by immunoblotting and mass spectrometry. P450 BM3v-induced transglutaminase activation was associated with increased 14,15-EET formation (p = 0.002) and spontaneous cell cornification (p < or = 0.001). Preferential involucrin biotinylation and the increased cornified cell envelope formation provided evidence that transglutaminases mediated the P450 BM3v-induced cross-linking activities. These results support a physiological role for 14,15-EET epoxygenases in regulating epidermal cornification, and they have important implications for epidermal barrier functions in vivo.  相似文献   

15.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

16.
Cornified envelopes and apoptotic bodies are transglutaminase-cross-linked end-products of physiological cell death pathways. The two structures have similar amino acid composition. Involucrin has been considered as a cornified envelope precursor protein expressed specifically in terminally differentiating keratinocytes and squamous epithelia. We report the presence in hepatocytes of an involucrin-like protein which could be purified from dog liver with procedures characteristic to involucrins. When compared to purified dog esophagus involucrin, the liver protein also reacts with anti-involucrin antibodies, has the same relative molecular mass, possesses similar amino acid composition, and shows almost identical peptide mapping pattern. The involucrin-like protein is detectable by immunohistochemistry in normal and apoptotic hepatocytes, is a substrate of tissue transglutaminase, and is incorporated into cross-linked apoptotic bodies. These results suggest that there are overlapping molecular components in the two characteristic forms (cornification and apoptosis) of naturally occurring cell death.  相似文献   

17.
18.
Expression patterns of loricrin in various species and tissues   总被引:3,自引:0,他引:3  
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nε-(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   

19.
M Simon  H Green 《Cell》1985,40(3):677-683
A transglutaminase-catalyzed cross-linking process characteristic of keratinocytes leads to the formation of the insoluble corneocyte envelope. The essentials of this process take place in vitro in a reconstituted system derived from subcellular fractions. A particulate fraction containing membrane-bound envelope precursor proteins and the enzyme transglutaminase is combined with cytosolic proteins; when the enzyme is activated by Ca++, cytosolic proteins are removed from solution and cross-linked to particulate proteins. This interaction is cell-type-specific, since particulates derived from fibroblasts and also containing transglutaminase activity cannot substitute for those of keratinocytes. Involucrin, a cytosolic protein known to be a precursor of the envelope, is more efficiently cross-linked than other cytosolic proteins. The cross-linking of proteins of the particulate fraction (membrane proteins) is promoted by the presence of involucrin.  相似文献   

20.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号