首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prospects for the genetic manipulation of lactobacilli   总被引:3,自引:0,他引:3  
Abstract Efforts are underway in a number of laboratories around the world to develop methods for the improvement of Lactobacillus strains by recombinant DNA techniques. Research has centered on: (i) characterization and construction of chimeric shuttle vectors based on endogenous Lactobacillus plasmids which are capable of replicating in lactobacilli; (ii) molecular cloning of genes and operons from lactobacilli encoding important pathways such as the lactose : phospho enol pyruvate phosphotransferase system, phosphogalactoside-β- d -galactohydrolase, and β-galactosidase; and (iii) methods for introduction of genes in vivo and in vitro through conjugation, transfection and transformation. The lack of natural gene exchange systems has prompted research efforts to devise a protoplast transformation system. Initial early successes in gene cloning, vector development, transfection, conjugation, protoplast fusion and, recently, transformation, have laid the ground-work for rapid development of gene exchange systems for the genus.  相似文献   

2.
Summary A versatile plasmid marker rescue transformation system was developed for homology-facilitated cloning in Bacillus subtilis. It is based on the highly efficient host-vector system 6GM15-pHPS9, which allows the direct selection of recombinants by means of -galactosidase -complementation. The system offers several advantages over previously described cloning systems: (1) the convenient direct selection of recombinants; (2) the ability to effectively transform B. subtilis competent cells with plasmid monomers, which allows the forced cloning of DNA fragments with high efficiency; (3) the availability of 6 unique target sites, which can be used for direct clone selection, SphI, NdeI, NheI, BamHI, SmaI and EcoRI; and (4) the rapid segregational loss of the helper plasmid from the transformed cells.  相似文献   

3.
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.  相似文献   

4.
In this study, we established new systematic protocols for the preparation of cDNA clones, conventionally termed open reading frame (ORF) clones, suitable for characterization of their gene products by adopting a restriction-enzyme-assisted cloning method using the Flexi((R)) cloning system. The system has following advantages: (1) preparation of ORF clones and their transfer into other vectors can be achieved efficiently and at lower cost; (2) the system provides a seamless connection to the versatile HaloTag((R)) labeling system, in which a single fusion tag can be used for various proteomic analyses; and (3) the resultant ORF clones show higher expression levels both in vitro and in vivo. With this system, we prepared ORF clones encoding 1929 human genes and characterized the HaloTag-fusion proteins of its subset that are expressed in vitro or in mammalian cells. Results thus obtained have demonstrated that our Flexi((R)) ORF clones are efficient for the production of HaloTag-fusion proteins that can provide a new versatile set for a variety of functional analyses of human genes.  相似文献   

5.
This paper describes the construction of 'Prime' cloning vectors, which include phage lambda and plasmid vectors useful for functional cloning in oocytes, yeast, and mammalian cells, and their use in a 'Prime' cloning system. The system takes advantage of the very active and precise 3' exonuclease activity of T4 DNA polymerase to produce single-stranded (ss) ends (cut-back) of vector and insert DNA. This results in the highly efficient directional cloning of cDNA and PCR-amplified DNA. The system obviates the need to digest insert DNA with a restriction endonuclease to unveil cloning sites, and thus eliminates the chance of internal digestion of the insert DNA. The cloning of PCR-amplified DNA, which is sometimes difficult, is made routine with this system. The 'Prime' sequence is included in vector cloning sites and cDNA and PCR primers. The 'Prime' sequence was chosen so that the ss sticky ends are nonpalindromic and will hybridize only to the appropriate partners. This makes cloning with the 'Prime' system very efficient, because neither the vector nor insert DNA is lost to unproductive self-hybridization.  相似文献   

6.
Z R Wu  B J Qi  R Q Jiao  F D Chen  L F Wang 《Gene》1991,106(1):103-107
Part of the pUC19 polylinker sequence (33 bp) was inserted into the pro-peptide-coding region of the Bacillus subtilis neutral protease-encoding gene to replace a 93-bp FspI-HindIII fragment. This in-frame sequence replacement had little effect on the expression and secretion of the neutral protease. This plasmid can therefore be used as a cloning vector, and recombinant clones can be directly identified on skim milk indicator plates by the loss of a clear ring (or halo) around the colonies. This novel cloning system offers several advantages over existing B. subtilis cloning vectors: (i) convenient direct screening of recombinants; (ii) the use of inexpensive indicator; (iii) no restriction on the use of host strains; and (iv) the availability of seven frequently used unique cloning sites: BamHI, XbaI, SalI, PstI, SphI, HindIII, and EcoRI. This system also has the potential to be used as an expression/secretion vector.  相似文献   

7.
S A Krawetz  D Sellos  N C Wong  G H Dixon 《Gene》1989,82(2):317-320
A phagemid was adapted for use as the vector in the vector-primer-cloner-sequencer cloning system. The use of this new vector markedly expanded the utility of this technology for the construction of cDNA libraries. Technological advantages and new capabilities include: (1) a greater number of unique restriction sites within the polylinker region; (2) the ability to produce single-stranded templates for nucleotide sequencing, and (3) a convenient means to synthesize strand-specific hybridization probes. With the use of this cloning system, a rat liver cDNA library (8.56 x 10(5) recombinants from 1 microgram of poly(A)+ RNA) was rapidly (in two days) constructed.  相似文献   

8.
9.
With the sequencing of genomes from many organisms now complete and the development of high-throughput sequencing, life science research has entered the functional post-genome era. Therefore, deciphering the function of genes and how they interact is in greater demand. To study an unknown gene, the basic methods are either overexpression or gene knockout by creating transgenic plants, and gene construction is usually the first step. Although traditional cloning techniques using restriction enzymes or a site-specific recombination system (Gateway or Clontech cloning technology) are highly useful for efficiently transferring DNA fragments into destination plasmids, the process is time consuming and expensive. To facilitate the procedure of gene construction, we designed a TA-based cloning system in which only one step was needed to subclone a DNA fragment into vectors. Such a cloning system was developed from the pGreen binary vector, which has a minimal size and facilitates construction manipulation, combined with the negative selection marker gene ccdB, which has the advantages of eliminating the self-ligation background and directly enabling high-efficiency TA cloning technology. We previously developed a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, subcellular localization analysis and promoter activity detection. Our results show that such a system is highly efficient and serves as a high-throughput platform for transient or stable transformation in plants for functional genome research.  相似文献   

10.
The treatment of DNA with bisulfite, which converts C to U but leaves 5-methyl-C unchanged, forms the basis of many analytical techniques for DNA methylation analysis. Many techniques exist for measuring the methylation state of a single CpG but, for analysis of an entire region, cloning and sequencing remains the gold standard. However, biases in polymerase chain reaction (PCR) amplification and in cloning can skew the results. We hypothesized that single-molecule PCR (smPCR) amplification would eliminate the PCR amplification bias because competition between templates that amplify at different efficiencies no longer exists. The amplified products can be sequenced directly, thus eliminating cloning bias. We demonstrated this accurate and unbiased approach by analyzing a sample that was expected to contain a 50:50 ratio of methylated to unmethylated molecules: a region of the X-linked FMR1 gene from a human female cell line. We compared traditional cloning and sequencing to smPCR and sequencing. Sequencing smPCR products gave an expected methylated to unmethylated ratio of 48:52, whereas conventional cloning and sequencing gave a biased ratio of 72:28. Our results show that smPCR sequencing can eliminate both PCR and cloning bias and represents an attractive approach to bisulfite sequencing.  相似文献   

11.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

12.
13.
One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter). Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I–mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15) resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75%) and directional cloning (99%) by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells.  相似文献   

14.
Genetic factors strongly determine the outcome of infectious diseases caused by various pathogens. The molecular mechanisms of resistance and susceptibility in humans, however, remains largely unknown. Complex interactions of multiple genes that control the host response to a pathogen further complicate the picture. Animal models have a tremendous potential to dissect the complex genetic system of host–pathogen interaction into single components. This is particularly true for the mouse, which will continue to develop into an invaluable tool in the identification and cloning of host resistance genes. Three main approaches have been taken to establish mouse models for human infectious diseases: 1) Production of mouse mutants by gene targeting; 2) positional cloning of host-resistance genes in mutant mice; and 3) mapping and characterization of quantitative trait loci (QTL) controlling the complex aspects of host–pathogen interactions. The contribution of all three methods to the understanding of infectious diseases in humans will be reviewed in this work, with a special emphasis on the studies of resistance/susceptibility mechanism in bacterial infections. Received: 7 September 2000 / Accepted: 23 November 2000  相似文献   

15.
In vitro cloning assays are used increasingly in investigative hematotoxicology and in screening candidate compounds for their hematotoxic potential. To expand these applications, a practical cloning assay for erythroid burst-forming units (BFU-e) that uses a microplasma clot (MPC) system was adapted to the dog, a species used extensively in experimental hematology and drug development. This system offers the advantage over the methylcellulose and soft agar culture systems of allowing specimen fixation and, therefore, morphological and cytochemical evaluation. The distribution of BFU-e among various anatomic sites was assessed using the MPC cloning system, which was modified to optimize the BFU-e growth. BFU-e growth required only erythropoietin (Epo) in the culture medium and there was no need for an exogenous source of burst-promoting activity (BPA). The cloning efficiency was linearly proportional to the plating concentrations of Epo and marrow mononuclear cells (MMC) over a range of 0 to 3 U Epo and 1 x 10(5) to 3 x 10(5) MMC per ml of culture, respectively. Increases in concentrations of Epo and MMC beyond these levels were not associated with linear growth. The addition of transferrin and spleen-conditioned medium containing a mixture of growth factors (including BPA) reduced BFU-e growth. The relative concentration of BFU-e was comparable among samples collected from the iliac crest, femur, and humerus. Serial cultures performed on individual dogs were highly reproducible and there was little variation in BFU-e activity among dogs of comparable age. It was concluded that the MPC system is a practical and reproducible cloning system for early (BFU-e), as well as late erythroid colony-forming units (CFU-e) in the dog. The concentration of BFU-e appears comparable throughout the active marrow; therefore, various anatomic sites can be used interchangeably for serial quantitative analysis of this progenitor.  相似文献   

16.
17.
Norbert Pütz   《Flora》2006,201(4):298-306
The development of a seedling into an adult plant comprises various underground processes. Time-lapse photography (TLP) makes them visible. This is documented for Potentilla inclinata (Rosaceae) and Inula ensifolia (Asteraceae).After germination, P. inclinata develops a taproot system. Contraction phenomena pull the basal part of the shoot at least 10 mm into the soil. Later, several adventitious roots are generated, and thus the root system changes to a fibrous one. This is followed by cloning without separation of the ramets.Seedlings of I. ensifolia develop a weak primary root. At an early stage, adventitious roots are formed at the leaf rosette. This fibrous root system exerts a strong pulling effect on the shoot. After one vegetation period the basis of the rosette is approx. 30 mm under the soil surface. Cloning includes the formation of many new horizontal shoots, which conquer new sites.These two examples show three functional steps common in the developmental progress of subterranean systems: (I) establishment of the seedling, (II) innovation and survival of the young plant, and (III) reiteration (cloning and dispersal). However, to accomplish these basic development steps the diversity of subterranean systems is enhanced by different organographical components.Furthermore, the development of subterranean systems is a dynamic process consisting of two kinetic processes: the vertical movement during seedling establishment, which brings the innovation buds to a safe soil position, and the horizontal movement during dispersal, which conquers new sites.  相似文献   

18.
We have developed a new class of cloning vectors: lambda-full-length cDNA (lambda-FLC) cloning vectors. These vectors can be bulk-excised for preparing full-length cDNA libraries in which a high proportion of the plasmids carry large inserts that can be transferred into other (for example, functional) vectors. Unlike other cloning vectors, lambda-FLC vectors accommodate a broad range of sizes of eukaryotic cDNA inserts because they contain "size balancers." Further, the main protocol we use for direct bulk excision of plasmids is mediated by a Cre-lox system and is apparently free of size bias. The average size of the inserts from excised plasmid cDNA libraries was 2.9 kb for standard and 6.9 kb for size-selected cDNA. The average insert size of the full-length cDNA libraries was correlated to the rate of new gene discovery, suggesting that effectively cloning rarely expressed mRNAs requires vectors that can accommodate large inserts from a variety of sources. Part of the vectors are also suitable for bulk transfer of inserts into various functional vectors.  相似文献   

19.
20.
A model system for testing the helper plasmid cloning system of Gryczan et al. (Mol. Gen. Genet. 177:459-467, 1980) was devised for the Streptococcus sanguis (Challis) host-vector system. In this system, linearized pVA736 plasmid efficiently transformed an S. sanguis (Challis) host containing a homologous plasmid, pVA380-1, but did not transform a plasmidless host or a host containing a nonhomologous plasmid, pVA380. In addition, whereas monomeric circular pVA736 transformed a plasmidless host with two-hit kinetics, it transformed a pVA380-1-containing host with one-hit kinetics. This helper plasmid cloning system was used to isolate two HindIII fragments (5.0 megadaltons [Mdal] and 1.9 Mdal in size) from the chromosome of Streptococcus mutans V825 which conferred high-level tetracycline resistance. One tetracycline-resistant clone was examined and found to contain three plasmids which were sized and designated pVA868 (9.0 Mdal), pVA869 (9.5 Mdal), and pVA870 (9.8 Mdal). Results of Southern blot hybridization and restriction endonuclease digestion confirmed that all three chimeras were composed of two HindIII fragments of the S. mutans V825 chromosome, as well as a large portion, varying in size for each chimera, of the 2.8 Mdal cloning vector, pVA380-1. Incompatibility observed between pVA380-1 and each of the chimeras indicated that replication of the chimeras was governed by the pVA380-1 replicative origin. Southern blotting experiments revealed that the chimeras hybridized to Tn916, providing the first evidence that transposon-related genes of enteric streptococcal origin are disseminated among oral streptococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号