首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

5.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

6.
7.
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.  相似文献   

8.
Wang Q  Li H  Post AF 《Journal of bacteriology》2000,182(6):1764-1767
A 4.0-kb DNA fragment of Trichodesmium sp. strain WH9601 contained gene sequences encoding the nitrate reduction enzymes, nirA and narB. A third gene positioned between nirA and narB encodes a putative membrane protein with similarity to the nitrate permeases of Bacillus subtilis (NasA) and Emericella nidulans (CrnA). The gene was shown to functionally complement a DeltanasA mutant of B. subtilis and was assigned the name napA (nitrate permease). NapA was involved in both nitrate and nitrite uptake by the complemented B. subtilis cells. napA is distinct from the nrt genes that encode the nitrate transporter of freshwater cyanobacteria.  相似文献   

9.
10.
Synthesis of nitrate reductase in the unicellular cyanobacterium Synechococcus sp. strain PCC 7942 took place at a slow rate when the cells were incubated without a supply of inorganic carbon, but addition to these cells of CO(2)/bicarbonate or, in a Synechococcus strain transformed with a gene encoding a 2-oxoglutarate permease, 2-oxoglutarate stimulated expression of the enzyme. Induction by 2-oxoglutarate was also observed at the mRNA level for two nitrogen-regulated genes, nir and amt1, but not for the photosystem II D1 protein-encoding gene psbA1. Our results are consistent with a role of 2-oxoglutarate in nitrogen control in cyanobacteria.  相似文献   

11.
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.  相似文献   

12.
13.
Three new Anabaena sp. strain PCC 7120 genes encoding group 2 alternative sigma factors have been cloned and characterized. Insertional inactivation of sigD, sigE, and sigF genes did not affect growth on nitrate under standard laboratory conditions but did transiently impair the abilities of sigD and sigE mutant strains to establish diazotrophic growth. A sigD sigE double mutant, though proficient in growth on nitrate and still able to differentiate into distinct proheterocysts, was unable to grow diazotrophically due to extensive fragmentation of filaments upon nitrogen deprivation. This double mutant could be complemented by wild-type copies of sigD or sigE, indicating some degree of functional redundancy that can partially mask phenotypes of single gene mutants. However, the sigE gene was required for lysogenic development of the temperate cyanophage A-4L. Several other combinations of double mutations, especially sigE sigF, caused a transient defect in establishing diazotrophic growth, manifested as a strong and prolonged bleaching response to nitrogen deprivation. We found no evidence for developmental regulation of the sigma factor genes. luxAB reporter fusions with sigD, sigE, and sigF all showed slightly reduced expression after induction of heterocyst development by nitrogen stepdown. Phylogenetic analysis of cyanobacterial group 2 sigma factor sequences revealed that they fall into several subgroups. Three morphologically and physiologically distant strains, Anabaena sp. strain PCC 7120, Synechococcus sp. strain PCC 7002, and Synechocystis sp. strain PCC 6803 each contain representatives of four subgroups. Unlike unicellular strains, Anabaena sp. strain PCC 7120 has three additional group 2 sigma factors that cluster in subgroup 2.5b, which is perhaps specific for filamentous or heterocystous cyanobacteria.  相似文献   

14.
Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp.  相似文献   

15.
A high CO2 requiring mutant of the marine cyanobacterium Synechococcus PCC7002 was generated using a random gene-tagging procedure. This mutant demonstrated a reduced photosynthetic affinity for inorganic carbon (Ci) and accumulated high internal levels of Ci that could not be used for photosynthesis. Analysis of the mutant genomic DNA showed that the mutagenesis had disrupted a cluster of genes involved in the cyanobacterial CO2 concentrating mechanism (CCM), the so-called ccm genes. These characteristics are consistent with a cyanobacterial mutant with defects in carboxysome assembly and/or functioning. Further genomic analyses indicated that the genes of the Synechococcus PCC7002 operon, ccmKLMN , are structurally similar to those of two closely related cyanobacteria, Synechococcus PCC7942 and Synechocystis PCC6803. The Synechococcus PCC7002 ccmM gene, which encodes a polypeptide with a predicted size of 70 kDa, was the direct target of the mutagenesis event. The CcmM protein has two distinct regions: an N-terminal region that shows similarity to an archaeon gamma carbonic anhydrase and a C-terminal region that contains repeated domains demonstrating sequence similarity to the small subunit of Rubisco. Physiological analysis of a ccmM -defined mutant showed that these cells were essentially identical to the original mutant; they required high CO2 concentrations for growth, they had a low photosynthetic affinity for Ci, and they internalized Ci to high levels. Moreover, ultrastructural examination showed that both the original and the defined mutants lack carboxysomes. Thus, our results demonstrate that the ccmM gene of Synechococcus PCC7002 encodes a polypeptide that is essential for carboxysome assembly and therefore for proper functioning of the cyanobacterial CCM.  相似文献   

16.
17.
The ndhF gene of the unicellular marine cyanobacterium Synechococcus sp. strain PCC 7002 was cloned and characterized. NdhF is a subunit of the type 1, multisubunit NADH:plastoquinone oxidoreductase (NADH dehydrogenase). The nucleotide sequence of the gene predicts an extremely hydrophobic protein of 664 amino acids with a calculated mass of 72.9 kDa. The ndhF gene was shown to be single copy and transcribed into a monocistronic mRNA of 2,300 nucleotides. An ndhF null mutation was successfully constructed by interposon mutagenesis, demonstrating that NdhF is not required for cell viability under photoautotrophic growth conditions. The mutant strain exhibited a negligible rate of oxygen uptake in the dark, but its photosynthetic properties (oxygen evolution, chlorophyll/P700 ratio, and chlorophyll/P680 ratio) were generally similar to those of the wild type. Although the ndhF mutant strain grew as rapidly as the wild-type strain at high light intensity, the mutant grew more slowly than the wild type at lower light intensities and did not grow at all under photoheterotrophic conditions. The roles of the NADH:plastoquinone oxidoreductase in photosynthetic and respiratory electron transport are discussed.  相似文献   

18.
Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene.  相似文献   

19.
20.
The synthesis and accumulation of compatible solutes represent an essential part of the salt acclimation strategy of microorganisms. Glucosylglycerol is considered to be the typical compatible solute among marine cyanobacteria. However, genes that encode enzymes for the synthesis of glucosylglycerol were not detected in the genome sequences of marine picoplanktonic Prochlorococcus strains. Instead, we noticed the presence of genes that putatively encode for glucosylglycerate (GGA) synthesis among Prochlorococcus and most other closely related marine picocyanobacteria. Recombinant proteins from Prochlorococcus marinus SS120 and Synechococcus sp. PCC 7002 exhibited glucosyl-phosphoglycerate synthase (GpgS) activity, and GpgS is a key enzyme of GGA synthesis. GGA accumulation was found to be salt- as well as nitrogen-regulated in the coastal strain Synechococcus sp. PCC 7002. Moreover, GGA was also detected in all picoplanktonic Prochlorococcus and Synechococcus strains harbouring gpgS genes, especially under N-limiting conditions. These results suggest that marine picocyanobacteria acquired the capacity to synthesize the negatively charged compound GGA during their evolution. Our results establish GGA as the fifth most widespread compatible solute among cyanobacteria. Additionally, GGA appears to replace glutamate as an anion to counter monovalent cations in marine picocyanobacteria from N-poor environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号