首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.  相似文献   

2.
We studied the phosphorylation of the beta subunit of the insulin receptor in intact freshly isolated rat hepatocytes, labelled with [32P]Pi. Insulin receptors partially purified by wheat-germ agglutinin chromatography were immunoprecipitated with either antibodies to insulin receptor or antibodies to phosphotyrosine. Receptors derived from cells incubated in the absence of insulin contained only phosphoserine. Addition of insulin to hepatocytes led to a dose-dependent increase in receptor beta-subunit phosphorylation, with half-maximal stimulation being observed at 2 nM-insulin. Incubation of cells with 100 nM-insulin showed that, within 1 min of exposure to the hormone, maximal receptor phosphorylation occurred, which was followed by a slight decrease and then a plateau. This insulin-induced stimulation of its receptor phosphorylation was largely accounted for by phosphorylation on tyrosine residues. Sequential immunoprecipitation of receptor with anti-phosphotyrosine antibodies and with anti-receptor antibodies, and phosphoamino acid analysis of the immunoprecipitated receptors, revealed that receptors that failed to undergo tyrosine phosphorylation were phosphorylated on serine residues. The demonstration of a functional hormone-sensitive insulin-receptor kinase in normal cells strongly supports a role for this receptor enzymic activity in mediating biological effects of insulin.  相似文献   

3.
Protein-tyrosine phosphatase (PTP) 1B has been implicated in negative regulation of insulin action, although little is known of the ability of insulin to regulate PTP1B itself. The ability of insulin to regulate phosphorylation and activation of PTP1B was probed in vivo. Challenge with insulin in vivo provoked a transient, sharp increase in the phosphotyrosine content of PTP1B in fat and skeletal muscle that peaked within 15 min. Insulin stimulated a decline of 60--70% in PTP1B activity. In mouse adipocytes, the inhibition of PTP1B activity and increased tyrosine phosphorylation of the enzyme were blocked by the insulin receptor tyrosine kinase inhibitor AG1024. Phosphoserine content of PTP1B declined in response to insulin stimulation. Elevation of intracellular cyclic AMP provokes a sharp increase in PTP1B activity and leads to increased phosphorylation of serine residues and decreased tyrosine phosphorylation. Suppression of cyclic AMP levels or inhibition of protein kinase A leads to a sharp decline in PTP1B activity, a decrease in phosphoserine content, and an increase in PTP1B phosphotyrosine content. PTP1B appears to be a critical point for insulin and catecholamine counter-regulation.  相似文献   

4.
5.
The action of insulin on tyrosine phosphorylation of plasma membrane-associated proteins in rat adipocytes was investigated. Incubation of plasma membranes from insulin-treated adipocytes with [gamma-32P] ATP results in a marked increase in tyrosine phosphorylation of Mr = 160,000 (P160) and Mr = 92,000 proteins when compared to controls. Based on the immunoreactivities of these two proteins with anti-insulin receptor antibodies, the Mr = 92,000 species is identified as the insulin receptor beta subunit while P160 is unrelated to the receptor structure. P160 appears to be a glycoprotein as evidenced by its adsorption to wheat germ agglutinin-agarose. The tyrosine phosphorylation of P160 exhibits a rapid response to insulin (maximal within 2 min at 37 degrees C) and is readily reversed following removal of the free hormone by anti-insulin serum. The time courses of insulin-stimulated phosphorylation as well as the dephosphorylation of P160 coincide with those of the activation and deactivation of the insulin receptor kinase in the same plasma membrane preparation. Concanavalin A and hydrogen peroxide mimic insulin stimulation of the insulin receptor kinase and enhance the tyrosine phosphorylation of P160. Isoproterenol, epidermal growth factor, and phorbol diester are without effects. Analysis of the insulin dose-response relationship between P160 tyrosine phosphorylation and insulin receptor kinase activity reveals that maximal phosphorylation of P160 occurs when only a fraction (25%) of the receptor kinase is activated by the hormone. A similar relationship between these two parameters is observed for the insulinomimetic agent hydrogen peroxide. The close correlation between the level of P160 phosphorylation and insulin receptor kinase activity suggests that P160 may be tyrosine phosphorylated by the receptor kinase following receptor kinase activation by the hormone or insulin-like agents. This hypothesis is further supported by the finding that the insulin receptor kinase is the only insulin-sensitive tyrosine kinase detectable in adipocyte plasma membranes under the conditions of our experiments.  相似文献   

6.
Insulin rapidly stimulates tyrosine phosphorylation of cellular proteins which migrate between 165 and 190 kDa during SDS-PAGE. These proteins, collectively called pp185, were originally found in anti-phosphotyrosine antibody (alpha PY) immunoprecipitates from insulin-stimulated Fao rat hepatoma cells. Recently, we purified and cloned IRS-1, one of the phosphoproteins that binds to alpha PY and migrates near 180 kDa following insulin stimulation of rat liver [Sun, X. J., et al. (1991) Nature 352, 73-77]. IRS-1 and pp185 undergo tyrosine phosphorylation immediately after insulin stimulation and show an insulin dose response similar to that of insulin receptor autophosphorylation. However, IRS-1 was consistently 10 kDa smaller than the apparent molecular mass of pp185. The pp185 contained some immunoblottable IRS-1; however, cell lysates depleted of IRS-1 with anti-IRS-1 antibody still contained the high molecular weight forms of pp185 (HMW-pp185). Furthermore, the tryptic phosphopeptide map of IRS-1 was distinct from that of HMW-pp185, suggesting that at least two substrates migrate in this region during SDS-PAGE. Moreover, the phosphatidylinositol 3'-kinase and its 85-kDa associated protein (p85) bound to IRS-1 in Fao cells, but weakly or not at all to HMW-pp185. Our results show that Fao cells contain at least two insulin receptor substrates, IRS-1 and HMW-pp185, which may play unique roles in insulin signal transmission.  相似文献   

7.
Caveolin 1, a component of caveolae, regulates signalling pathways compartmentalization interacting with tyrosine kinase receptors and their substrates. The role of caveolin 1 in the Insulin Receptor (IR) signalling has been well investigated. On the contrary, the functional link between caveolin 1 and IGF-I Receptor (IGF-IR) remains largely unknown. Here we show that (1) IGF-IR colocalizes with caveolin 1 in the lipid rafts enriched fractions on plasmamembrane in R-IGF-IR(WT) cells, (2) IGF-I induces caveolin 1 phosphorylation at the level of tyrosine 14, (3) this effect is rapid and results in the translocation of caveolin 1 and in the formation of membrane patches on cell surface. These actions are IGF-I specific since we did not detect caveolin 1 redistribution in insulin stimulated R(-) cells overexpressing IRs.  相似文献   

8.
Insulin stimulates the phosphorylation of calmodulin in intact adipocytes   总被引:5,自引:0,他引:5  
Phosphorylation of cellular proteins is known to play an important role in mediating the metabolic effects of insulin in target cells. Here we show that exposure of intact adipocytes to physiological concentrations of insulin results in phosphorylation of the calcium receptor protein, calmodulin. The identity of the phosphorylated protein as being calmodulin in intact cells was demonstrated by two-dimensional electrophoresis, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7)-affinity chromatography, and positive staining with the Ca2+ binding protein stain Stains All. Phosphorylation of calmodulin occurred at physiological insulin concentrations with maximum stimulation (608 +/- 114% over basal) at 50 microunits/ml (3.3 X 10(-10) M) insulin. The 32Pi incorporated into calmodulin was stable to base, indicating that phosphotyrosine was involved and thus implicating the insulin-receptor tyrosine kinase as being responsible for its phosphorylation. The phosphorylation of calmodulin may represent an important component of the mechanism for intracellular signaling not only for insulin, but potentially for other physiological regulators of cellular metabolism.  相似文献   

9.
A tumor promoter stimulates phosphorylation on tyrosine   总被引:27,自引:0,他引:27  
The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate is mitogenic for normal chicken embryo fibroblasts and also causes these cells to express transiently many properties of cells transformed by Rous sarcoma virus. Since some mitogenic hormones stimulate a tyrosine-specific protein kinase activity, and since the transforming protein of RSV is a tyrosine-specific protein kinase, we have examined whether TPA also stimulates protein phosphorylation on tyrosine. We report here that TPA treatment of normal cells resulted in a very rapid phosphorylation on tyrosine of a protein peak of Mr 40 to 43 kilodaltons. Thus, a similar biochemical activity (tyrosine phosphorylation) is associated with the action of polypeptide mitogenic hormones, Rous sarcoma virus and a tumor promoter. In addition, TPA treatment resulted in rapid changes in phosphorylation of proteins on serine and threonine.  相似文献   

10.
After adding insulin to cells overexpressing the insulin receptor, the activity of phosphatidylinositol (PI) 3-kinase in the anti-phosphotyrosine immunoprecipitates was rapidly and greatly increased. This enzyme may therefore be a substrate for the insulin receptor tyrosine kinase and may be one of the mediators of insulin signal transduction. However, it is unclear whether or not activated tyrosine kinase of the insulin receptor directly phosphorylates PI 3-kinase at tyrosine residue(s) and whether insulin stimulates the specific activity of PI 3-kinase. We reported previously that the 85-kDa subunit of purified PI 3-kinase was phosphorylated at tyrosine residue(s) by the insulin receptor in vitro. To examine the tyrosine phosphorylation of PI 3-kinase and change of its activity by insulin treatment in vivo, we used a specific antibody to the 85-kDa subunit of PI 3-kinase. The activity of PI 3-kinase in immunoprecipitates with the antibody against the p85 subunit of PI 3-kinase was increased about 3-fold by insulin treatment of cells overexpressing insulin receptors. Insulin treatment also stimulated the tyrosine, serine, and threonine phosphorylation of the alpha-type 85-kDa subunit of PI 3-kinase in vivo. Phosphatase treatment of the immunoprecipitates abolished the increase in PI 3-kinase activity. The phosphorylation(s) of the kinase itself, tyrosine phosphorylation(s) of associated protein(s), or the complex formation of the phosphorylated PI 3-kinase with associated proteins may increase the activity of PI 3-kinase.  相似文献   

11.
The beta-subunit of the insulin receptor possesses an insulin-stimulatable protein tyrosine kinase activity. It has been widely postulated that this activity may mediate the transduction of the insulin signal by phosphorylation of cellular substrates involved in the mechanism of insulin action. We have identified, by immunoblotting with antiphosphotyrosine antibodies, a 165 kDa protein in rat adipocytes that is rapidly phosphorylated in response to insulin. Phosphorylation of this protein (pp165) occurs within 5-10 s of exposure to 10 nM insulin, suggesting that it may be a direct substrate for the insulin receptor. This protein was recovered in an intracellular membrane that fractionates with the low-density microsomes. Using discontinuous sucrose density-gradient centrifugation, pp165-containing vesicles were separated from other vesicles of the low-density microsomes including the glucose transporter-containing vesicles, indicating that pp165 is probably not a regulatory component of the vesicles that translocate glucose transporters in response to insulin. However, pp165 may be involved in conveying receptor activation at the cell surface to an intracellular site of insulin action.  相似文献   

12.
Insulin was found to stimulate the phosphorylation of the 21,000-dalton protein encoded by the ras oncogene of Harvey murine sarcoma virus in membrane fraction both in vivo and in vitro. When the human ras proteins expressed in E. coli were reconstituted with purified human insulin receptor, GTPase activity of normal or its mutated oncogenic ras protein was not stimulated by the addition of insulin. Likewise, tyrosine kinase activity or insulin binding capacity of the receptor was not influenced when assayed in the presence of the ras proteins. These results suggest that ras proteins may be coupled with the insulin receptor system through some unidentified membrane factors.  相似文献   

13.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis.  相似文献   

14.
Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.  相似文献   

15.
I Schvartz  O Ittoop  G Davidai  E Hazum 《Peptides》1992,13(1):159-163
The mitogenic activity of endothelin (ET) was studied in osteoblast-like cells, MC3T3-E1. [3H] Thymidine incorporation induced by ET was markedly lower than that of platelet-derived growth factor (PDGF). ET synergistically stimulated [3H] thymidine incorporation induced by PDGF with an apparent ED50 value of 2.5 nM. Treatment of MC3T3-E1 cells with ET and subsequent immunoblotting of the cell extracts with antiphosphotyrosine antibodies followed by labeling with [125I] protein A resulted in the identification of several phosphotyrosine-containing proteins. The intensity of these labeled phosphoproteins significantly increased when the cells were treated with a combination of ET and PDGF. Genistein, an inhibitor of tyrosine kinases, blocked [3H] thymidine incorporation as well as protein tyrosine phosphorylation stimulated by either ET, PDGF or the combination of ET and PDGF. These findings suggest that tyrosine phosphorylation could play a role in the comitogenic activity of ET in osteoblast-like cells.  相似文献   

16.
17.
Using lectin affinity-purified receptor preparations from human hepatoma cells, insulin (10(-7)M) specifically stimulated phosphorylation of the 95,000 dalton (beta) subunit of its own receptor. Phospho-amino acid analysis of the receptor subunit revealed that insulin increased at least 2.5-fold the content of phosphoserine and of phosphotyrosine. In intact cells, the major effect of insulin is to increase the phosphoserine content of its receptor. These findings are the first demonstration of an insulin-stimulated serine kinase in a cell-free system.  相似文献   

18.
Insulin in rat adipose tissue acts to increase the phosphorylation about 2.5-fold of a low molecular weight protein in the cytosol designated phosphoprotein m. Isoproterenol had no effect on the phosphorylation of phosphoprotein m. Some of the properties of phosphoprotein m are: soluble in 1% trichloro acetic acid, heat-stable and has a molecular weight of 23,000 on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphoserine and phosphothreonine are the phosphorylated amino acid residues of phosphoprotein m. The physical and chemical properties of phosphoprotein m are similar to those of previously described inhibitor and modulator proteins.  相似文献   

19.
Interleukin 2 is a growth factor secreted by T lymphocytes upon antigenic stimulation and inducing the proliferation of T cells bearing at their surface the heterodimeric high-affinity form of its receptor. No enzymatic function has so far been demonstrated in the receptor subunits. In an attempt to elucidate the biochemical pathway of signal transduction, we investigated the capacity of interleukin 2 to modulate tyrosine phosphorylation in T cell membranes. Membrane-rich fractions from T cells were tested for their ability to phosphorylate tyrosine in the presence or absence of added recombinant interleukin 2. Using as substrate a synthetic polymer of glutamic acid and tyrosine, we demonstrated a 3-4-fold stimulation of tyrosine phosphorylation in the presence of interleukin 2; this stimulating effect appeared to be well correlated with interleukin 2 function since (a) it was not observed in insensitive cells, (b) it required the presence of the high-affinity form of the receptor and (c) it was dose-dependent. Confirmatory results were obtained by phosphorylating membrane-rich fractions with [gamma-32P]ATP and by analysing the resulting phosphoproteins: only in fractions from cells with the high-affinity form of the receptor were several membrane proteins specifically phosphorylated on tyrosine residues in response to interleukin 2. At least two proteins of 115 and 58 kDa were consistently hyperphosphorylated on tyrosine in an interleukin-2-dependent manner. This stimulation was strongly dependent on the presence of the protein tyrosine phosphatase inhibitor, sodium orthovanadate. Thus, we propose that interleukin 2 enhances tyrosine phosphorylation by stimulating a tyrosine kinase activity. The nature of the enzyme involved remains to be determined.  相似文献   

20.
Murine interleukin-3 (mIL-3) stimulates the rapid and transient tyrosine phosphorylation of a number of proteins in mIL-3-dependent B6SUtA1 cells. Two of these proteins, p68 and p140, are maximally phosphorylated at tyrosine residues within 2 min of addition of mIL-3. Because 125I-mIL-3 can be cross-linked to both 70- and 140-kDa proteins on intact B6SUtA1 cells, we investigated whether the tyrosine phosphorylated p68 and p140 were these two mIL-3 receptor proteins. Addition of antiphosphotyrosine antibodies (alpha PTyr Abs) to cell lysates from B6SUtA1 cells, to which 125I-mIL-3 had been disuccinimidyl suberate-cross-linked, resulted in the immunoprecipitation of 125I-mIL-3 complexed to both 70- and 140-kDa proteins. To determine if the observed immunoprecipitation pattern was due to the direct interaction of alpha-PTyr Abs with these two mIL-3 receptor proteins or with tyrosine-phosphorylated proteins that were associated with the receptor proteins, cell lysates were treated with 2% sodium dodecyl sulfate, 5% 2-mercaptoethanol, and boiled for 1 min. After removal of sodium dodecyl sulfate and 2-mercaptoethanol, alpha PTyr Abs immunoprecipitated 125I-mIL-3 cross-linked to only the 140-kDa protein. To confirm this finding, 32P-labeled B6SUtA1 cells were treated with biotinylated or fluoresceinated mIL-3. Addition of immobilized streptavidin or antifluorescein antibodies, respectively, to cell lysates from these cells resulted in the enrichment of only a 140-kDa tyrosine phosphorylated protein. Taken together, these results strongly suggest that only the 140-kDa receptor protein is tyrosine phosphorylated upon mIL-3 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号