首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerin is a nuclear membrane-anchored protein which is absent or mutated in patients affected by Emery-Dreifuss muscular dystrophy. In this study, we induced apoptosis in cultured mouse myoblasts to evaluate emerin fate during the nuclear destabilization involved in programmed cell death. Emerin proteolysis was observed in myocytes during the apoptotic process. Myoblast apoptosis and emerin degradation were associated with chromatin compaction and detachment from the nuclear lamina, as detected by electron microscopy. In vivo specific inhibition of caspase 3 or caspase 6 activity completely abolished emerin proteolysis. These results show that the process of programmed cell death in muscle cells leads to emerin proteolysis, which appears to be related to caspase 6 activation and to cleavage of other nuclear envelope proteins, that share sequence homologies or functional features with emerin.  相似文献   

2.
Previously, we characterized the endonucleolytic activity of the nuclear matrix prepared from rat liver cryopreserved in liquid nitrogen. The enzymic activity was attributed to a 23 kDa, Mg(2+)-dependent and sequence non-specific endonuclease (p23) stably associated with the nuclear matrix. Here we show that p23 was absent from the nuclear matrix prepared from fresh liver. Instead, both ex vivo (cryopreservation), as well as in vivo-induced necrosis by repeated freezing/thawing of liver tissue in an anaesthetized rat, promoted the activation and translocation of p23 to the nuclear matrix. Considering that ex vivo and in vivo freezing/thawing of the liver were accompanied by morphological (nuclear compaction) and biochemical events (increased LDH activity, disorderly genomic DNA degradation, absence of lamin proteolysis, appearance of 62 and 50 kDa necrotic cleavage products of PARP-1) commonly observed during necrosis, and because the association of p23 with the nuclear matrix was saturable, reflecting the existence of a limited number of distinct high affinity sites on the nuclear matrix for p23, we concluded that the activation of the nuclear matrix-associated endonuclease p23 is a feature of liver cryonecrosis. Although cryonecrosis represents a typical example of acute cell damage, our results suggest that it is realized by ordered molecular events.  相似文献   

3.
It was shown that reactivity of the nuclear matrix of thymocytes for antibodies against chromatin of the control and irradiated thymocytes and PDN did not change immediately and increased markedly 2 h following irradiation of rats with a dose of 10 Gy. The method of immunoblotting failed to reveal any qualitative differences in the protein content of the thymocyte nuclear matrix of the control and exposed rats.  相似文献   

4.
The in vitro gamma-irradiated mouse thymocytes were embedded in low melting agarose at 37 degrees C. After getting at 4 degrees C, the cells were lysed in neutral detergent solution containing proteinase K and ethidium bromide. Microscopic visualization of single lysed and stained cells showed the presence of the central "core" (nuclear matrix) surrounded with "halo" (relaxed nuclear DNA). During electrophoresis (2-5 V/sm, 5 min) this "halo" migrated towards the anode forming a "tail". The use of microdensitometric system provided measuring the size of the tail (L) and quantity of migrated DNA (S) for individual cells as well as obtaining the distribution of these parameters among the cells. The latter may be characteristic of heterogeneity of the cell population. It was shown that L and S increased linearly with the dose irradiation at least between 0.2 and and 5.0 Gy. In irradiated thymocyte (3 Gy) the DNA repair occurred within 10-20 min, but residual DNA damage could be observed even after 60 min of incubation. These damages may initiate the degradation of DNA in irradiated thymocytes that was observed after the repair of DNA.  相似文献   

5.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

6.
In the current study the internucleosomal DNA cleavage activity associated with apoptosis was investigated in avian thymocytes. Thymocyte nuclear proteins from glucocorticoid-treated chickens were incubated with chicken red blood cell (cRBC) nuclei, and DNA degradation was analyzed by agarose gel electrophoresis and fluorescence-activated flow cytometry. The thymocyte nuclear extract contained an endonuclease activity that degraded cRBC chromatin at internucleosomal sites as detected by agarose gel electrophoresis. Flow cytometry analysis of cRBC nuclei that were treated with thymocyte nuclear proteins demonstrated a loss of cellular DNA as a function of the amount of added nuclease activity. Furthermore, it was demonstrated that the thymocyte nuclear extract contained a nuclease activity that was capable of degrading radiolabelled naked 32P-DNA into acid soluble DNA fragments. All three assay methods demonstrate that the thymocyte nuclease activity can be inhibited by EDTA, zinc ions and the nuclease inhibitor aurintricarboxylic acid. Based on the analysis of cofactor requirement of this nuclease activity and its susceptibility to inhibitors, the endonuclease activity present in avian apoptotic thymocytes appears to be identical to the mammalian counterpart.  相似文献   

7.
The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.  相似文献   

8.
It was shown that thymus lymphocyte death caused by the effect of dithiobisdinitrobenzoic acid, hyperthermia, and osmotic shock is not accompanied by ordered chromatin degradation. Protein synthesis inhibitors do not prevent thymocyte death under these effects. The authors discuss the kinds of lymphoid cell death which depend upon the nature of the damaging factor and differ both in morphology and the character of nuclear material degradation.  相似文献   

9.
Cell cycle progression is regulated by cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. In the frog, Xenopus laevis, the CDK inhibitor p27(Xic1) (Xic1) inhibits DNA synthesis by negatively regulating CDK2-cyclin E. Using the frog egg extract as a model system for the study of Xic1, studies have demonstrated that Xic1 protein levels are regulated by nuclear ubiquitination and proteolysis. To characterize the molecular mechanism that regulates Xic1 turnover, we have identified the minimal sequences of Xic1 that are necessary and sufficient for its nuclear ubiquitination and degradation. Using deletion mutagenesis, our studies indicated that the C-terminal 50 amino acids of Xic1 are critical for its proteolysis beyond a role in nuclear transport. Replacement of the Xic1 C terminus with the SV40 nuclear localization sequence resulted in the nuclear localization of Xic1 but not its ubiquitination or degradation. Our deletion studies also indicated that the CDK2-cyclin binding domain of Xic1 is important for its efficient retention in the nucleus. Further deletion analyses identified at least 3 lysine residues within the Xic1 C terminus that are targeted for specific ubiquitination. Importantly, our studies demonstrated that the Xic1 C-terminal 50 amino acids can serve as a nuclear degradation signal when fused to a stable heterologous nuclear protein. Moreover, a 30-amino-acid region within the C terminus of Xic1 can serve as a nuclear ubiquitination signal. To address the role of phosphorylation on Xic1 turnover, all the potential phosphorylation sites within the C-terminal 50 amino acids of Xic1 were mutated to alanine to prevent possible phosphorylation. This resulted in a Xic1 protein that was nevertheless degraded in a manner similar to wild-type Xic1, suggesting that phosphorylation of Xic1 is not critical for its nuclear ubiquitination or proteolysis.  相似文献   

10.
The protease Pim1/LON, a member of the AAA+ family of homo-oligomeric ATP-dependent proteases, is responsible for the degradation of soluble proteins in the mitochondrial matrix. To establish the molecular parameters required for the specific recognition and proteolysis of substrate proteins by Pim1, we analyzed the in organello degradation of imported reporter proteins containing different structural properties. The amino acid composition at the amino-terminal end had no major effect on the proteolysis reaction. However, proteins with an amino-terminal extension of less than 60 amino acids in front of a stably folded reporter domain were completely resistant to proteolysis by Pim1. Substrate proteins with a longer amino-terminal extension showed incomplete proteolysis, resulting in the generation of a defined degradation fragment. We conclude that Pim1-mediated protein degradation is processive and is initiated from an unstructured amino-terminal segment. Resistance to degradation and fragment formation was abolished if the folding state of the reporter domain was destabilized, indicating that Pim1 is not able to unravel folded proteins for proteolysis. We propose that the requirement for an exposed, large, non-native protein segment, in combination with a limited unfolding capability, accounts for the selectivity of the protease Pim1 for damaged or misfolded polypeptides.  相似文献   

11.
12.
The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.  相似文献   

13.
Several nuclear matrix proteins are substrates for proteolytic cleavage during apoptosis. Using Western blotting, the temporal patterns of cleavage of three nuclear matrix proteins (lamin B, NUMA and the nucleoporin TPR) were compared in HL60 cells induced to undergo apoptosis after irradiation, heat shock or treatment with etoposide. Flow cytometry was used to compare the kinetics of post-cleavage degradation of lamin B, NUMA and TPR after irradiation, and to correlate DNA fragmentation with protein degradation in cells induced to undergo apoptosis with different agents. During radiation-induced apoptosis, cleavage and subsequent degradation of lamin B, NUMA and TPR occurred with different kinetics. Low-molecular-weight DNA fragmentation occurred subsequent to the initiation of NUMA cleavage, coincided with lamin B cleavage, but occurred before more extensive degradation of lamin B and NUMA. A similar sequence was observed for cells treated with etoposide. However, during heat-induced apoptosis, cleavage of lamin B and NUMA occurred much sooner compared to other agents, with NUMA cleaved into multiple fragments within 15 min after heating. We conclude that the hierarchical sequence and kinetics of degradative events contributing to nuclear disassembly during apoptosis are highly dependent on the inducing agent. Furthermore, the nuclear pore complex, like the nuclear lamina and internal nuclear matrix, is a target for proteolytic cleavage.  相似文献   

14.
The nuclear protein, p110, encoded by the avian MC29 virus degrades with a half-life of 30 to 40 min in virus-transformed cells. Inhibitors of lysosomal proteolysis had no effect on this degradation. When inhibitors of RNA or protein synthesis were added immediately after pulse-labeling the p110 with [35S]methionine, degradation was impeded. Treatment of cells with cycloheximide prior to, and after, the pulse extended the half-life of p110 further than post-treatment alone, and addition of both actinomycin D and cycloheximide to cells pretreated with cycloheximide extended the half-life even further. In cells depleted of cellular ATP using a glucose-deficient medium containing oligomycin, degradation of p110 was only partially inhibited, indicating no direct involvement of ATP in degradation. Isolation of nuclei or nuclear matrices containing labeled p110, with subsequent incubation, resulted in minimal loss of p110 during several hours. These results suggest that p110 is degraded by a protease which is itself labile and freely diffusible from the nucleus, and, in addition, degradation may involve interaction of p110 with newly synthesized RNA.  相似文献   

15.
Glucocorticoids initiate a cytolytic process in lymphoid cells that is characteristic of programmed cell death. In vivo treatment of adrenalectomized rats with glucocorticoids results in the rapid degradation of the thymocyte genome at internucleosomal sites. This DNA degradation occurs prior to cell death, and considerable evidence indicates that this nucleolytic event is central to the initiation of lymphocytolysis. To further characterize this process, we have searched for the gene products in thymocytes which may be responsible for steroid-induced DNA degradation. Adrenalectomized rats were treated in vivo with dexamethasone or a vehicle control; nuclear thymocyte proteins were extracted with 0.6 M NaCl and analyzed for protein content or nuclease activity on sodium dodecyl sulfatepolyacrylamide gels containing calf thymus DNA. Glucocorticoid treatment resulted in the induction of two major protein families, a 30-32-kDa protein doublet and a series of 3-4 proteins of 12-19 kDa, both of which express prominent DNase activity. Induction of the lower molecular weight nucleases increased with time after steroid treatment and paralleled the time course of glucocorticoid-mediated DNA degradation. Nuclease induction was blocked by the glucocorticoid antagonist RU 486, indicating a steroid receptor-mediated process. When nuclei from glucocorticoid-resistant cells were incubated with nuclear extracts from glucocorticoid-treated rats, the DNA was cleaved at internucleosomal sites, whereas extracts from vehicle-treated animals were virtually inactive. Based on these findings we propose that glucocorticoids, acting via a receptor-mediated pathway, induce a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis.  相似文献   

16.
Initial degradation of chromatin into high-molecular mass DNA fragments during apoptosis reflects the periodicity of chromatin organization into nuclear matrix-attached loops. In this article, we put forward the hypothesis that this pattern of DNA cleavage is also a result of the localization of an endonuclease on the nuclear matrix. Namely, we observed an endonucleolytic activity of the isolated rat hepatocyte nuclear matrix. It was Mg2+-dependent, with an optimal activity at pH 7.2 in the absence of either Na+ or K+. It was fully active in the presence of Zn2+ and capable of introducing single-strand breaks into plasmid DNA. It did not display a sequence-specific activity. A 23 kDa DNA nuclease that was principally localized on the rat hepatocyte nuclear matrix was detected. The enzyme shared the biochemical requirements with the nuclear matrix endonucleolytic activity, thus we proposed that p23 could be responsible for the endonucleolytic activity of the nuclear matrix. In view of its properties and preferential localization on the nuclear matrix, the endonuclease described herein could be a possible candidate that brings about initial DNA cleavage during apoptosis.  相似文献   

17.
The rate of total protein degradation down to acid-soluble products in the B. subtilis cells growing on a minimal medium is about 4--5% per hour. Under amino acid deficiency the rate of proteolysis depends on the allelic state of the relA gene, so that in the rel+ cells it increases two-fold, while in the rel- cells it remains low. Elimination of NH4+, PO43- and Mg2+ from the culture medium or an addition of NaN3 (8 mM) or 2,4-dinitrophenol (2 mM) results in 1.5--2.0-fold stimulation of proteolysis independently of the relA gene. In all cases studied the rate of proteolysis decreases after addition of chloramphenicol (100 micrograms/ml). It is proposed that chloramphenicol decreases the intracellular concentration of ppGpp, which is believed to exert pleiotropic alterations of cellular metabolism under condition of growth limitation. Quite different is the case of degradation of anomalous proteins synthesized in the presence of the lysine analog--S-2-aminoethylcystein. Degradation of anomalous proteins proceeds very rapidly (about 70% per hour); chloramphenicol (100 micrograms/ml) decreases the rate of proteolysis only two-fold. It was found that tetracycline (100 micrograms/ml) effectively inhibits the degradation of anomalous proteins. This activity of tetracycline was not observed in the presence of 50 mM of Mg2+ and seems to be dependent on the capacity of the antibiotic to form complexes with bivalent cations. These results reveal common features of control of proteolysis in the cells of B. subtilis and E. coli.  相似文献   

18.
The addition of a cytoplasmic fraction, isolated from cells 3h after irradiation of mice, to exposed or intact thymocyte nuclei causes a 2- or 3-fold acceleration of chromatin degradation in the nuclei incubated in conditions optimum for activity of Ca2+,Mg2+-dependent endonuclease to be manifest. In contrast to thymocytes, no chromatin degradation products are found in liver cells of irradiated mice. The cytoplasmic fraction isolated from hepatocytes of irradiated animals fails to activate chromatin degradation in thymocyte nuclei.  相似文献   

19.
A study was made of the action of novobiocin on degradation and repair events in supercoiled nuclear DNA from three thymocyte fractions obtained by ficoll-paque gradient sedimentation. When added before gamma-irradiation novobiocin (1.9 mg/ml) exerted a radioprotective effect during the "second wave" of supercoiled DNA degradation. It is suggested that this effect may be due to the inhibition of DNA topoisomerase II.  相似文献   

20.
Concanavalin A (conA) inhibits the degradation of [3H]leucine-labeled cellular proteins of human lymphocytes. The lectin also stimulates the migration of non-histone proteins (NHP) from the cytoplasm to the nucleus. The increased nuclear level of NHP is associated with increased cellular binding of [3H]actinomycin D [(3H]AD). Decreased protein breakdown and increased migration of NHP are parallel events, i.e. both changes occur as a function of the lectin concentration and display a similar time course, suggesting that these events could be related. Similar effects are observed with fluoride, chloroquine and iodoacetate: these agents simultaneously decrease proteolysis and increase the nuclear level of NHP, associated with increased cellular [3H]AD binding. Fractionation of the acidic NHP according to pH 2.5-6.5 shows that proteins with a high degree of degradation in unstimulated cells correspond to proteins with a high degree of migration in conA-stimulated cells. A similar correlation was observed in fluoride-treated lymphocytes. conA, fluoride and iodoacetate decrease cellular [3H]chloroquine [(3H]CQ) accumulation, indicating a lysosomotropic effect. These and previously reported data suggest, but do not prove that conA inhibits degradation of cellular proteins via the lysosomal pathway. Ammonium chloride, methylamine and sodium azide also inhibit proteolysis and increase cellular [3H]AD binding; however, their effects are weak. On the basis of these observations it appears that lysosomal degradation and migration of NHP to the nucleus are linked; however, the mechanism of the linkage is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号