首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
千岛湖两栖爬行类动物群落结构嵌套分析   总被引:1,自引:0,他引:1  
王熙  王彦平  丁平 《动物学研究》2012,33(5):439-446
生境片段化是导致生物多样性降低的主要原因之一.该文采用样线法对千岛湖23个岛屿的两栖爬行类进行了调查,并结合植物种类调查数据和GIS技术提取的栖息地景观参数,使用“BINMATNEST”软件和Spearman相关性分析等方法,对这些岛屿上的两栖爬行类群落的分布格局及其影响因素进行分析.结果表明,千岛湖两栖爬行类群落整体上呈现嵌套分布格局;嵌套格局与岛屿面积和生境类型相关显著.因此,在制定千岛湖地区两栖爬行动物保护措施时,应优先考虑面积较大和生境类型多的岛屿.  相似文献   

2.
千岛湖雀形目鸟类群落嵌套结构分析   总被引:6,自引:0,他引:6  
2006年4月至2007年11月, 采用截线法对千岛湖20个岛屿上的雀形目鸟类种类组成进行调查, 检验其群落是否符合嵌套式分布的格局。此外通过野外直接记录与辨认法对岛屿上的植物种类组成进行调查, 同时通过查阅文献资料和野外调查获得鸟类体长、分布宽度和生境专属性等生活史特征参数, 以及采用GIS分析测定岛屿面积和隔离度参数, 进而分析和探讨雀形目鸟类群落嵌套格局的影响因素。结果显示, 千岛湖岛屿雀形目鸟类群落呈现显著的嵌套结构, 岛屿面积、植物物种丰富度和生境专属性对其嵌套结构具显著性的影响。千岛湖岛屿雀形目鸟类存在着选择性灭绝过程; 植物物种丰富度和鸟类生境专属性则通过影响鸟类在不同生境下的分布对鸟类群落嵌套结构产生影响。上述结果表明千岛湖岛屿雀形目鸟类群落嵌套格局同时受到栖息地和物种两方面因素的影响, 为此我们认为应更多地关注那些面积较大和植物物种丰富度较高的岛屿, 以及生境专属性较高的种类等鸟类多样性及其栖息地的保护策略。  相似文献   

3.
水盐梯度下荒漠植物多样性格局及其与土壤环境的关系   总被引:2,自引:0,他引:2  
张雪妮  杨晓东  吕光辉 《生态学报》2016,36(11):3206-3215
植物多样性格局作为生物多样性维持的一个重要方面可揭示群落构建的信息,反映物种对环境的适应性。结合样带调查和实验分析的方法,研究新疆艾比湖湿地自然保护区内水盐梯度下荒漠植物多样性格局及其与土壤环境因子间关系。结果表明:(1)高、低水盐样地(SW1,SW2)土壤容积含水量(SVWC)和电导率(EC)分别为16.65%和12.02 m S/cm及2.63%和1.91m S/cm,水盐变化主要影响草本和部分灌木群落的植物组成;(2)高水盐生境下植物群落无明显趋势性分布,低水盐生境下植物种依水盐和营养元素呈区域性分布。(3)高水盐生境下荒漠植物的多度分布呈对数正态模型,低水盐条件下符合Zipf模型,多度分布的变化反映了群落组成结构的水盐梯度响应;(4)SW1样地多样性总体显著高于SW2样地,土壤p H、SVWC和硫(S)对植物多样性有不同程度的极显著影响。综上可知,荒漠植物分布及多样性格局与土壤环境间关系呈一定的水盐梯度响应规律,本研究可为该地区植被恢复和土壤盐渍化治理提供科学依据。  相似文献   

4.
城市扩展是导致生境破碎化和生物多样性下降的重要原因之一,强烈改变城市景观,也改变生态过程。土壤动物是城市生态系统的重要组成部分,可对快速城市化进程及其带来的影响做出相对灵敏的响应,具有典型的环境指示作用。城市生态系统的干扰因素较复杂,土地利用类型不能完全反映土壤动物局地生境差异,这使得城市景观格局对土壤动物多样性的影响问题长期以来缺乏系统研究。为了解决城市化导致的生境丧失与土壤动物多样性保护的矛盾,本文探讨了不同城市化梯度区景观格局对土壤动物多样性的影响研究进展,试图揭示景观尺度多种生境类型的土壤动物分布规律,为城市土壤动物多样性保护提供一种新的思路,丰富城市景观生态学的研究内容。  相似文献   

5.
一般认为,景观斑块面积和破碎化对物种丰富度和分布格局有重要的影响。在宁夏中部荒漠地区,天然柠条林和人工柠条林地交错排列,形成点、片、带状等大小不等的斑块性分布,表现为典型的破碎化斑块格局生境特征。本文采用巴氏罐诱法调查了在小尺度下荒漠景观人工柠条林破碎化生境不同斑块内地表甲虫的物种多样性。结果共获得10科20属29种地表甲虫,其中拟步甲科昆虫占绝对优势,阿小鳖甲Microdera kraatzi alashanica Skopin、克小鳖甲Microdera kraatzi kraatzi(Reitter)为优势种。Rarefaction曲线显示较大面积的斑块有较多的物种多样性,但群落多样性指数各斑间块差异不显著。利用斑块面积对物种数-个体数进行回归分析表明,地表甲虫的物种多样性受斑块面积的影响,生境破碎化会导致地表甲虫多样性下降。  相似文献   

6.
农田景观中非农生境对生物多样性保护、耕地多功能性和农业产量等具有重要影响.本文选择中国城市化过程中生物多样性保护与农业高产需求相互冲突的典型地区沈阳市沈北新区为研究区,采用信息熵模型划分为城市近郊、城市边缘区和乡村区域,采用手捡法和Baermann 法调查,鉴定了节肢动物和土壤线虫,并通过线性回归分析确定了非农生境类型、结构及数量与土壤动物的协同关系.结果表明: 沈北新区农田景观的非农生境斑块面积均小于1 hm2.随着与城市中心距离的增加,非农生境类型和比例逐渐增加,面积比例呈倒“U”型变化,斑块数量比例从8.6%增加到27.8%;土壤动物个体数呈现“U”型变化,物种量无明显变化规律.乡村和城市近郊的非农生境斑块数量比与土壤动物个体数呈正向协同关系,城市边缘区无明显规律;非农生境面积比与土壤动物个体数均呈反向协同关系;非农生境斑块数量比和面积比与土壤动物物种量均无明显协同关系.  相似文献   

7.
扎龙湿地不同生境的昆虫多样性   总被引:4,自引:0,他引:4  
Gu W  Ma L  Ding XH  Zhang J  Han ZW 《应用生态学报》2011,22(9):2405-2412
为了探讨湿地不同生境对昆虫物种多样性的影响,对扎龙湿地8种生境的昆虫进行了系统调查.共捕获昆虫5822只,分属11目58科143种,其中直翅目、双翅目、蜻蜒目为扎龙湿地的优势类群.不同生境中,草原草甸昆虫多样性最高,湖边生境多样性指数和均匀度指数均较高,杂草甸均最低.聚类分析和主分量分析结果表明,不同生境的昆虫群落相似性与水资源状况和植被类型有关,捕食性类群种类数和个体数量对昆虫群落稳定性具有重要的调控作用.湖边生境昆虫群落稳定性最强,湿草甸稳定性最弱.湿地水资源状况能影响昆虫生存生境,进而影响昆虫群落的组成和分布格局.  相似文献   

8.
新疆阜康绿洲不同生境土壤动物群落多样性及其季节动态   总被引:1,自引:0,他引:1  
为了查明阜康绿洲不同生境土壤动物群落多样性特征及其变化动态,2010年4、7、9及11月中旬分别以该绿洲的用材林、防护林、苗圃、耕地、盐碱地、灌木林及荒草地生境为研究对象,采用手捡法、改良干漏斗法和湿漏斗法分离0~20 cm土层中的土壤动物,并分析了不同生境土壤动物的群落结构、分布特征及季节动态.共获得土壤动物1 1098只,共35类,其中线虫类、轮虫类和弹尾类为优势类群.在7种不同生境土壤动物类群、个体数和多样性以及不同季节之间均存在显著差异(P<0.05),其中Shannon多样性指数依次为用材林>防护林>灌木林>耕地>盐碱地>苗圃>荒草地;时空分布调查发现,不同生境土壤动物群落分布具有明显的表聚性特征,并在不同土层及季节间均有显著性差异(P<0.05),季节动态变化依次为秋季最多、其次春季和冬季,夏季最少;不同生境土壤动物群落间的Jaccard相似性指数属于中等不相似(处于0.25~0.50).不同生境组间聚类和排序结果表明,将7种不同生境分为人工林生境型、人为干扰生境型、灌木生境型及荒漠生境型4大类型.结果表明,阜康绿洲不同生境土壤动物群落组成和多样性具有明显的生境和季节差异特征.  相似文献   

9.
从雅鲁藏布江中游地区采集土壤样品35份,主要涵盖农田、城市花园、高山草甸、湿地和防护林带五种生态类型,从中分离获得土壤淡色丝孢菌12属。利用种群优势度、Shannon-Wiener多样性指数、均匀度、生态位宽度、群落相似性等指标对该地区不同生境的土壤淡色丝孢菌物种(属级)的生态多样性及物种生态位进行了分析。结果表明,土壤淡色丝孢菌的数量和类群分布在该地区不同生态类型土壤中差异明显。农田生境中土壤淡色丝孢菌物种多样性指数最高,均匀度较高;防护林带生境中土壤淡色丝孢菌物种多样性指数最低,均匀度也最低。对不同生态类型土壤中淡色丝孢菌的相似性分析发现,农田和防护林带生境的相似性系数最大,说明这两种生境具有较多的共同物种;湿地和城市花园生境的相似性系数最小。物种生态位结果分析表明,在上述五种生境中,拟青霉属Paecilomyces、刺座霉属Volutella、曲霉属Aspergillus和青霉属Penicillium具有较宽的生态位宽度,属于广适性物种;而白僵菌属Beauveria和绿僵菌属Metarhizium生态位很窄,只存在于某个生境中,属于狭适性物种。  相似文献   

10.
基于MiSeq测序分析新疆泥火山土壤细菌群落多样性   总被引:2,自引:1,他引:1  
杨娟  郝志成  张亚平 《微生物学通报》2016,43(12):2609-2618
【目的】以新疆乌苏泥火山土壤为研究对象,了解泥火山细菌群落结构及其时空动态变化。【方法】选择泥火山4种不同生境土壤在4、7、11月份采样,应用Illumina Mi Seq测序技术测定泥火山土壤细菌的16S r RNA基因V3–V4变异区序列,分析乌苏泥火山不同生境土壤细菌群落组成。【结果】泥火山土壤细菌在97%的相似水平下共得到OTU个数为29 005,在细菌门水平上共有38种细菌类群,Proteobacteria、Actinobacteria、Bacteroidetes为优势菌群,在属水平上共有72种细菌类群,其中含量最高的是未分类细菌;多样性分析表明生境D的丰度指数和多样性指数最高,将泥火山细菌群落多样性与理化因子结合分析,发现其多样性随着土壤养分的增加而基本降低,说明物种多样性指数与理化因子之间呈负相关关系;OTU水平的分析表明生境A的群落组成在时空动态上没有显著差异,其样品群落组成较为相似,而生境C的物种组成差异较大。【结论】相比较于传统方法,Mi Seq测序能够更全面解析环境样品中微生物多样性,揭示了乌苏泥火山群蕴含着丰富的微生物资源,这将为深入研究泥火山生态系统奠定基础,为合理利用和开发泥火山微生物资源提供指导。  相似文献   

11.
Matthews  Jeffrey W. 《Plant Ecology》2004,174(2):271-278
Biotas of both geographical islands and habitat islands are often nested subsets of the biotas of successively more species-rich islands within the same system. The life history characteristics of a species may determine how that species contributes to the general pattern of species nestedness. Here, I investigate the floras of 56 sedge meadow wetlands in northern Illinois (USA) in order to characterize the degree of nestedness in these communities, determine which individual plant species contribute to the nested pattern, and investigate species characteristics that might be related to nonrandom patterns of distribution in individual plant species. The entire assemblage of species at all sedge meadows was significantly nested. Species richness and area were significantly correlated, and the nested pattern was closely related to site area, suggesting that species drop out of the assemblage in a predictable order as site area decreases. Some individual species exhibited nonrandom distributions across the sites, occurring more often in large, species-rich sites. Large sites were more likely than smaller sites to contain conservative species, i.e., those typical of pristine natural habitat, whereas nonconservative species were distributed more randomly among sites. Nested patterns of distribution of conservative species with respect to site area may result from their high probability of extinction on small sites or from a tendency for required habitats to co-occur on the same large sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Taxonomic nestedness, the degree to which the taxonomic composition of species‐poor assemblages represents a subset of richer sites, commonly occurs in habitat fragments and islands differing in size and isolation from a source pool. However, species are not ecologically equivalent and the extent to which nestedness is observed in terms of functional trait composition of assemblages still remains poorly known. Here, using an extensive database on the functional traits and the distributions of 6316 tropical reef fish species across 169 sites, we assessed the levels of taxonomical vs functional nestedness of reef fish assemblages at the global scale. Functional nestedness was considerably more common than taxonomic nestedness, and generally associated with geographical isolation, where nested subsets are gradually more isolated from surrounding reef areas and from the center of biodiversity. Because a nested pattern in functional composition implies that certain combinations of traits may be represented by few species, we identified these groups of low redundancy that include large herbivore‐detritivores and omnivores, small piscivores, and macro‐algal herbivores. The identified patterns of nestedness may be an outcome of the interaction between species dispersal capabilities, resource requirements, and gradients of isolation among habitats. The importance of isolation in generating the observed pattern of functional nestedness within biogeographic regions may indicate that disturbance in depauperate and isolated sites can have disproportionate effects on the functional structure of their reef fish assemblages.  相似文献   

13.
We assessed the relationship between habitat heterogeneity and bird species richness and composition within wetlands of the floodplain of the Middle Paraná River, Argentina. Given the high habitat heterogeneity in these wetland systems, we sought to determine whether (i) there was a positive relationship between bird species richness and habitat heterogeneity; (ii) whether bird species richness was associated with certain types of individual habitat types; (iii) whether there was a pattern of species nestedness and turnover between sites as a function of habitat heterogeneity and composition, respectively; and (iv) whether individual species exhibited associations with habitat heterogeneity. Point counts were used to survey birds at 60 sites. We estimated the area of eight habitat types found within a 200‐m radius from the centre of each site and calculated number and Pielou's evenness of habitat types. These indices, together with area proportion of each habitat type, were used as explanatory factors of bird species richness in linear regression models. Habitat heterogeneity per se rather than area of individual habitat types was a more important predictor of species richness in these fluvial wetlands. Sites with more habitat types supported more bird species. Results showed that individual bird species were associated with different habitat types and, therefore, sites that contained more habitat types contained more species. Number of habitat types accounted for species nestedness between sites whereas composition of habitat types accounted for species turnover between sites. Results suggest that selection of heterogeneous sites by individual species could help explain the positive heterogeneity–species richness relationship. Our findings highlight the importance of habitat heterogeneity per se resulting from flood disturbances in maintaining bird richness in fluvial systems.  相似文献   

14.
We set up two alternative hypotheses on how environmental variables could foster nestedness; one of “nested habitats” and another of “nested habitat quality”. The former hypothesis refers to situations where the nestedness of species depends on a nestedness of discrete habitats. The latter considers situations where all species in an assemblage increase in abundance along the same environmental gradient, but differ in specialisation or tolerance. We tested whether litter‐dwelling land snails (terrestrial gastropods) in boreal riparian forest exhibited a nested community structure, whether such a pattern was related to differences in environmental variables among sites, and which of the two hypotheses that best could account for the found pattern. We sampled litter from 100 m2 plots in 29 mature riparian forest sites along small streams in the boreal zone of Sweden. The number of snail species varied between 3 and 14 per site. Ranking the species‐by‐site matrix by PCA scores of the first ordination axis revealed a similarly significant nested pattern as when the matrix was sorted by number of species, showing that the species composition in this meta‐community can be properly described as nested. Several environmental variables, most notably pH index, were correlated with the first PCA axis. All but two species had positive eigenvectors in the PCA ordination and the abundance increased considerably along the gradient for most of the species implying that the hypothesis of “nested habitats” was rejected in favour of the “nested habitat quality” hypothesis. Analyses of nestedness have seldom been performed on equal sized plots, and our study shows the importance of understanding that variation in environmental variables among sites can result in nested communities. The conservation implications are different depending on which of our two hypotheses is supported; a conservation focus on species “hotspots” is more appropriate if the communities are nested because of “nested habitat quality”.  相似文献   

15.
Rosamonde R. Cook 《Oecologia》1995,101(2):204-210
Biotic assemblages are said to be nested when the species making up relatively species-poor biotas comprise subsets of the species present at richer sites. Because species number and site area are often correlated, previous studies have suggested that nestedness may be relevant to questions of how habitat subdivision affects species diversity, particularly with respect to the question of whether a single large, contiguous patch of habitat will generally contain more species than collections of smaller patches having the same total combined area. However, inferences from analyses of nestedness are complicated by (1) variability in degrees of nestedness measured in natural communities, (2) variability in species-area relationships, and (3) the fact that nestedness statistics do not account for the size of habitat patches, only in the degree of overlap among sites with different numbers of species. By comparing various indices of nestedness with a saturation index that more directly measures the effect of habitat subdivision, it is shown that the first two of these factors are not as important as the third. Whether a single large site or several smaller ones having the same total combined area maximizes species diversity is dependent on (1) overlap in species composition among sites and (2) the number of species per unit area in the different sites. Because nestedness indices do not account for species number at a site, they cannot accurately predict how habitat subdivision affects species diversity patterns. Still, nestedness analyses are important in that they indicate the degree to which rare species tend to be found in the largest, or the most species-rich, sites, patterns not revealed by the saturation index. Both types of analysis are important in order to obtain a more complete picture of how species richness and compositional patterns are influenced by habitat subdivision.  相似文献   

16.
Aims The nested subset pattern has been widely studied in the last 20 years, and recent syntheses have challenged the prevalence of this pattern in nature. We examined the degree of nestedness, its temporal variability and its environmental correlates in stream insects of a boreal drainage system. We also examined differences between nested and idiosyncratic species in site occupancy, niche position and niche breadth. Location Koutajoki drainage basin in northern Finland. Methods We used (i) nestedness analyses with three null models for testing the significance of nestedness; (ii) Spearman rank correlation to examine the correlates of nestedness; (iii) outlying mean index analysis to analyse the niche characteristics of species; (iv) and t‐test to examine differences in niche breadth, niche position and site occupancy of idiosyncratic and other nested species. Results Stream insect assemblages were significantly nested in each of the three study years. The maximally packed matrices were significantly nested according to the nestedness calculator based on null models I (species frequencies and site richness equiprobable) and II (species frequencies fixed and site richness equiprobable), but non‐significant based on a conservative null model III (species frequencies and site richness fixed to those of the observed matrix). The most important correlate of nestedness was stream size, whereas isolation, productivity (total phosphorus) and habitat heterogeneity exhibited non‐significant relationship with nestedness. Idiosyncratic species occurred, on average, at more sites than nested species, mirroring the restricted distributions of several nested species that were inclined towards species‐rich sites. Idiosyncratic and nested species also differed in niche position and niche breadth, with idiosyncratic species having, on average, less marginal niche positions and wider niches than nested species. Main conclusions Stream size correlated with nestedness, possibly because small streams were inhabited only by species able to persist under, or colonize shortly after, disturbances, while most species could occur at larger sites where disturbances are less severe. From the conservation perspective, our findings suggest that stream size really matters, given that sites with high species richness and many rare species are more likely to occur in larger streams. However, also the requirements of idiosyncratic species should be accommodated in conservation planning.  相似文献   

17.
Nested bird and micro-habitat assemblages in a peatland archipelago   总被引:2,自引:0,他引:2  
Biotic assemblages of insular habitats are nested when poor assemblages are subsets of richer ones. Nestedness of species assemblages is frequent and may result from selective extinction or frequent colonization in insular habitats. It may also be created by a nested distribution of habitats among islands or by sampling bias. We sampled 67 isolated peatlands (7–843 ha) in southern Quebec, Canada, to measure nestedness of bird species assemblages among peatlands and assess the habitat nestedness hypothesis. Species and microhabitat assemblages were both strongly nested among peatlands. Whether sites were ranked by species richness, microhabitat richness or peatland area had no effect on nestedness. However, microhabitat nestedness was significantly reduced when sites were sorted by area rather than by microhabitat richness. As expected, if bird-microhabitat associations are responsible for the nested pattern of distribution, we found a positive correlation between the contributions of bird species and microhabitats to individual site nestedness. Nevertheless, microhabitat assemblages were significantly less nested than bird species assemblages, possibly because of frequent recolonization by birds or uneven sampling among sites. Received: 12 June 1998 / Accepted: 20 September 1998  相似文献   

18.
Communities in isolated habitat patches surrounded by inhospitable matrices often form a nested subset pattern. However, the underlying causal mechanisms and conservation implications of nestedness in regional communities remain controversial. The nested ranks of species in a nested species‐by‐site matrix may reflect a gradient of species vulnerability to extinction or of colonization ability. However, nestedness analysis has rarely been used to explore determinants of species rank; consequently, little is known of underpinning mechanisms. In this study, we examined nestedness in moorland plant communities widely interspersed within the subalpine zone of northern Japan. Moorland sites differed in area (1000–160 000 m2) and were naturally isolated from one another to various extents within an inhospitable forest matrix. We also determined whether site characteristics (physical and morphometric measures) and species characteristics (niche position and breadth, based on species’ traits) are related to nestedness. Moorland plant communities in the study area were significantly nested. The pH and moorland kernel density (proxy for spatial clustering of moorlands around the focal site) were the most important predictors of moorland site nested rank in a nestedness matrix. Niche breadths of species (measured as variation in leaf mass area and height) predicted species’ nested ranks. Selective environmental tolerances imposed by environmental harshness and selective extinction caused by declines in site carrying capacities probably account for the nested subset pattern in moorland plant communities. The nested rank of species in the nestedness matrix can therefore be translated into the potential order of species loss explainable by species niche breadths (based on variation in functional traits). Complementary understanding of the determinants of site ranking and species ranking in the nestedness matrix provides powerful insight into ecological processes underlying nestedness and into the ways by which communities are assembled or disassembled by such processes.  相似文献   

19.
Question: Herb‐rich patches are biodiversity hotspots for vascular plants in boreal forests. We ask: Do species occurrences on herb‐rich patches show a non‐random, nested structure?; Does patch size relate to richness of edaphically demanding and red‐listed species?; Does a set of small patches support more edaphically demanding and red‐listed species than a few large patches of the equal area? Location: Eastern Finland (63°04′N, 29°52′E), boreal vegetation zone. Data: Vegetation mapping of 90 herb‐rich sites, varying from 0.05 to 6.93 ha in size and belonging to six different, predetermined forest site types. Results: Using the RANDNEST procedure, only one site type showed a significantly nested pattern, and patch area was not related to “nestedness” in any of the site types. The number of edaphically demanding and red‐listed plant species was positively correlated with a patch size in three forest site types. In all site types, a set of small patches had more edaphically demanding and red‐listed species than did a few large patches of the equal total area. Conclusions: For conservation, it is essential to protect representative sets of different herb‐rich forest site types because flora varies between the site types. Within herb‐rich forest site types, several small areas may support representative species composition. However, successful conservation requires thorough species inventories, because of the high level of heterogeneity between the herb‐rich patches.  相似文献   

20.
A nested pattern occurs whenever the species observed in depauperate habitat patches are a subset of those found in more species‐rich patches. Ecologists have documented many instances of nestedness caused by population‐level processes such as colonization and extinction at biogeographic scales. However, few researchers have examined whether nestedness may exist at fine scales due to the ways in which individual organisms discriminate among potential habitat patches. In 1999, we experimentally fragmented an old‐field habitat into patches of varying size to test whether nestedness could exist on a fine spatial scale. Five treatments of differing patch size were replicated five times in a Latin square design by selectively mowing 15×15 m2 plots within an old‐field (patch areas: 225, 180, 135, 90, and 45 m2). Specifically, we tested whether butterflies foraging within a network of patches differing in area conformed to a nested subset structure. We also classified species according to (1) their flight height while foraging (high or low), and (2) their adult habitat breadth (ubiquitous, general, or restricted) to determine whether nestedness could be explained by difference in species’ tendency to discriminate among patches differing in area.
We found significant evidence that a community of foraging Lepidoptera conformed to a nested subset structure based on the difference between the observed nestedness within the butterfly community and the nestedness obtained from randomly generated species presence/absence matrices. Poisson regression analyses demonstrated that high‐flying, habitat‐restricted species avoided the smallest patches (90 and 45 m2) in favor of larger remnants, whereas low‐flying, habitat generalists used all patch sizes. Thus, our study is one of the first to demonstrate that nestedness among species subsets can be observed at fine spatial scales (within a single 1.5 hectare field) and may be maintained by species behavioral differences: discriminating species (i.e. high‐flying, habitat restricted) avoided the smallest patches, and less discriminating species (i.e. low‐flying, ubiquitous) were distributed throughout the field without regard to patch size. Our results also suggest that nestedness should be viewed as yet another scalar pattern in ecology, generated by variation in patch use by individuals at fine‐scales as well as the more traditionally invoked processes of extinction and colonization of species at broad‐scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号