首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mature miRNA of 20-24 nt in length are the endogenous sncRNA. They programs RISC to regulate functioning of mRNA with complimentary sites for these miRNAs. In case of Ago3 protein present in human RISC miRNAs direct inhibition of translation, whereas in case of Ago2 is in RISC, than mRNA cleavage in the middle of miRNA/mRNA heteroduplex is also possible. Using ACTIVITY system, that we developed earlier, we analyzed published data on miRNA affinity to human Ago2 and Ago3 proteins. We found increase in miRNA affinity to both Ago2 and Ago3 with the increase of the YRHB tetranucleotide abundance near 3'-end of these miRNAs (r = 0.613, alpha < 0.025). We also found that miRNA tendency to bind Ago2 in favor of Ago3 increases with the RHHK tetranucleotide abundance near miRNA center (r = 0.501, alpha < 0.05). Using these two findings we proposed two formulas to predict miRNA affinity to Ago2 and Ago3 proteins based on the YRHB and RHHK abundances within this arbitrary miRNA. Thereby we made reliable predictions of miRNA affinity to these proteins in RISC for both canonical (alpha < 0.00025) and non-canonical (alpha < 0.05) miRNAs in comparison with independent experimental data.  相似文献   

3.
Sorting of Drosophila small silencing RNAs   总被引:3,自引:0,他引:3  
Tomari Y  Du T  Zamore PD 《Cell》2007,130(2):299-308
In Drosophila, small interfering RNAs (siRNAs), which direct RNA interference through the Argonaute protein Ago2, are produced by a biogenesis pathway distinct from microRNAs (miRNAs), which regulate endogenous mRNA expression as guides for Ago1. Here, we report that siRNAs and miRNAs are sorted into Ago1 and Ago2 by pathways independent from the processes that produce these two classes of small RNAs. Such small-RNA sorting reflects the structure of the double-stranded assembly intermediates--the miRNA/miRNA( *) and siRNA duplexes--from which Argonaute proteins are loaded. We find that the Dcr-2/R2D2 heterodimer acts as a gatekeeper for the assembly of Ago2 complexes, promoting the incorporation of siRNAs and disfavoring miRNAs as loading substrates for Drosophila Ago2. A separate mechanism acts in parallel to favor miRNA/miRNA( *) duplexes and exclude siRNAs from assembly into Ago1 complexes. Thus, in flies small-RNA duplexes are actively sorted into Argonaute-containing complexes according to their intrinsic structures.  相似文献   

4.
It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.  相似文献   

5.
6.
Kawamata T  Yoda M  Tomari Y 《EMBO reports》2011,12(9):944-949
MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.  相似文献   

7.
In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded character—as is found in small interfering RNAs (siRNAs)—directs duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide.  相似文献   

8.
microRNAs (miRNAs) are small non-coding RNAs that regulate mRNA stability and translation through the action of the RNAi-induced silencing complex (RISC). Our current understanding of miRNA function is inferred largely from studies of the effects of miRNAs on steady-state mRNA levels and from seed match conservation and context in putative targets. Here we have taken a more direct approach to these issues by comprehensively assessing the miRNAs and mRNAs that are physically associated with Argonaute 2 (Ago2), which is a core RISC component. We transfected HEK293T cells with epitope-tagged Ago2, immunopurified Ago2 together with any associated miRNAs and mRNAs, and quantitatively determined the levels of these RNAs by microarray analyses. We found that Ago2 immunopurified samples contained a representative repertoire of the cell's miRNAs and a select subset of the cell's total mRNAs. Transfection of the miRNAs miR-1 and miR-124 caused significant changes in the association of scores of mRNAs with Ago2. The mRNAs whose association with Ago2 increased upon miRNA expression were much more likely to contain specific miRNA seed matches and to have their overall mRNA levels decrease in response to the miRNA transfection than expected by chance. Hundreds of mRNAs were recruited to Ago2 by each miRNA via seed sequences in 3'-untranslated regions and coding sequences and a few mRNAs appear to be targeted via seed sequences in 5'-untranslated regions. Microarray analysis of Ago2 immunopurified samples provides a simple, direct method for experimentally identifying the targets of miRNAs and for elucidating roles of miRNAs in cellular regulation.  相似文献   

9.
Mature microRNAs (miRNAs) with a length of 20–24 nucleotides are endogenous, small, non-coding RNAs. They program the RNA-induced silencing complex (RISC) to inhibit translation of the mRNAs carrying the sites complementary to these miRNAs. When the RISC contains Ago3, the mRNA translation is inhibited; however, in the case of Ago2, the mRNA can be also cleaved in the center of mRNA/miRNA heteroduplex. Using the earlier developed system ACTIVITY, we have analyzed the published data on the affinity of mature human miRNA sequences for the Ago2 and Ago3 proteins. It has been found that the higher the abundance of YRHB tetranucleotides near the miRNA 3′-end, the higher the miRNA affinity for both proteins (r = 0.613, α < 0.025) and that the miRNA binding to Ago2 increases relative to that Ago3 with the abundance of RHHK tetranucleotides near the miRNA center (r=0.501, α < 0.05). These two patterns allowed us to propose equations for predicting the affinity of mature miRNAs for the Ago2 and Ago3 proteins and to reliably predict the affinity of canonical (α < 0.00025) and noncanonical (α < 0.05) miRNAs for each protein using independent data.  相似文献   

10.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs composed of 20-23 nucleotides. They are initially transcribed in the nucleus as pri-miRNAs. After processing, one strand from the miRNA duplex (miR-5p/miR-3p duplex) is loaded onto the RNA-induced silencing complex (RISC) to produce a functional, mature miRNA that inhibits the expression of multiple target genes. In the case of some miRNAs, both strands can be equally incorporated into the RISC as single strands, and both strands can function as mature miRNAs. Thus, a technique for selective expression of miR-5p and miR-3p strands is required to identify distinct targets of miRNAs. In this Letter, we report the synthesis and properties of miRNA duplexes carrying biaryl units at the 5'-terminus of one strand. We found that incorporation of biaryl units at the 5'-terminus of one strand of miRNA duplexes induced strand specificity in these duplexes. Further, we succeeded in identifying endogenous mRNA targets for each strand of the duplex by using the biaryl-modified miRNA duplexes.  相似文献   

11.
S Gu  L Jin  Y Huang  F Zhang  MA Kay 《Current biology : CB》2012,22(16):1536-1542
Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4) (reviewed in [1-4]). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood [5, 6]. The?Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain [7, 8] whose primary function is to bind the 3' end of small RNAs [9-13]. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells.?We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs,?PAZ-disrupted Agos bound duplex small interfering RNAs,?but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.  相似文献   

12.
13.
Argonaute (Ago) proteins function in RNA silencing as components of the RNA-induced silencing complex (RISC). In lower organisms, the small interfering RNA and miRNA pathways diverge due in part to sorting mechanisms that direct distinct small RNA (sRNA) duplexes onto specific Ago-RISCs. However, such sorting mechanisms appear to be lost in mammals. miRNAs appear not to distinguish among Ago1–4. To determine the effect of viral infection on the sorting system, we compared the content of deep-sequenced RNA extracted from immunoprecipitation experiments with the Ago1 and Ago2 proteins using Epstein–Barr virus (EBV)-infected cells. Consistent with previous observations, sequence tags derived from miRNA loci in EBV and humans globally associate in approximately equivalent amounts with Ago1 and Ago2. Interestingly, additional sRNAs, which have not been registered as miRNAs, were associated with Ago1. Among them, some unique sequence tags derived from tandem loci in the human genome associate exclusively with Ago1 but not, or rarely, with Ago2. This is supported by the observation that the expression of the unique sRNAs in the cells is highly dependent on Ago1 proteins. When we knocked down Ago1, the expression of the Ago1-specific sRNAs decreased dramatically. Most importantly, the Ago1-specific sRNAs bound to mRNAs and regulated target genes and were dramatically upregulated, depending on the EBV life cycle. Therefore, even in mammals, the sorting mechanism in the Ago1–4 family is functional. Moreover, the existence of Ago1-specific sRNAs implies vital roles in some aspects of mammalian biology.  相似文献   

14.
15.
In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro.  相似文献   

16.
Asymmetry in the assembly of the RNAi enzyme complex   总被引:120,自引:0,他引:120  
Schwarz DS  Hutvágner G  Du T  Xu Z  Aronin N  Zamore PD 《Cell》2003,115(2):199-208
A key step in RNA interference (RNAi) is assembly of the RISC, the protein-siRNA complex that mediates target RNA cleavage. Here, we show that the two strands of an siRNA duplex are not equally eligible for assembly into RISC. Rather, both the absolute and relative stabilities of the base pairs at the 5' ends of the two siRNA strands determine the degree to which each strand participates in the RNAi pathway. siRNA duplexes can be functionally asymmetric, with only one of the two strands able to trigger RNAi. Asymmetry is the hallmark of a related class of small, single-stranded, noncoding RNAs, microRNAs (miRNAs). We suggest that single-stranded miRNAs are initially generated as siRNA-like duplexes whose structures predestine one strand to enter the RISC and the other strand to be destroyed. Thus, the common step of RISC assembly is an unexpected source of asymmetry for both siRNA function and miRNA biogenesis.  相似文献   

17.
18.
Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs   总被引:19,自引:0,他引:19  
Argonaute proteins associate with small RNAs that guide mRNA degradation, translational repression, or a combination of both. The human Argonaute family has eight members, four of which (Ago1 through Ago4) are closely related and coexpressed in many cell types. To understand the biological function of the different Ago proteins, we set out to determine if Ago1 through Ago4 are associated with miRNAs as well as RISC activity in human cell lines. Our results suggest that miRNAs are incorporated indiscriminately of their sequence into Ago1 through Ago4 containing microRNPs (miRNPs). Purification of the FLAG/HA-epitope-tagged Ago containing complexes from different human cell lines revealed that endonuclease activity is exclusively associated with Ago2. Exogenously introduced siRNAs also associate with Ago2 for guiding target RNA cleavage. The specific role of Ago2 in guiding target RNA cleavage was confirmed independently by siRNA-based depletion of individual Ago members in combination with a sensitive positive-readout reporter assay.  相似文献   

19.
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA‐induced silencing complex (RISC), underpinning a powerful mechanism for fine‐tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)‐dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt‐dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR‐134. Furthermore, NMDAR‐dependent down‐regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho‐regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA‐mediated translational repression to control dendritic spine morphology.  相似文献   

20.
Chu CY  Rana TM 《PLoS biology》2006,4(7):e210
RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号