首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology’s notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space–time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a “sense” of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.  相似文献   

2.
Regarding such an important issue as our origin, as well as the origin of all biological diversity, it is surprising to realize that evolution still faces drawbacks in keeping its deserved notability as a unifying theory in biology. This does not happen because evolutionism lacks validity as a scientific theory, but rather because of several misconceptions regarding evolutionary biology that were and continue to be found in elementary and secondary education. Furthermore, mistaken evolutionary ideas also affect some philosophical and social issues. The aim of the present study was to evaluate knowledge about evolution among freshman students from distinct majoring areas at Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Brazil. The research was carried out based on a ten-question questionnaire about evolution with distinct levels of difficulty, comprising the most observed misconceptions. In this study, 231 students attending classes in biological sciences (morning and evening schedule), exact sciences (agronomy, physics, chemistry, and math), and human sciences (history, geography, and pedagogy) were interviewed. The total average of right answers was 48.8%, and the highest average per course obtained was 58.7% from the students attending biological sciences (evening schedule). Although evolutionary biology and ecology are supposed to represent teaching guide issues according to the recommendations of the National Curricular Parameters for the Secondary School, the data obtained suggest that the evidence for evolution, the role of natural selection and random events, as well as the sources of variation, must be better focused at schools.  相似文献   

3.
When social scientists began employing evolutionary game theory (EGT) in their disciplines, the question arose what the appropriate interpretation of the formal EGT framework would be. Social scientists have given different answer, of which I distinguish three basic kinds. I then proceed to uncover the conceptual tension between the formal framework of EGT, its application in the social sciences, and these three interpretations. First, I argue that EGT under the biological interpretation has a limited application in the social sciences, chiefly because strategy replication often cannot be sensibly interpreted as strategy bearer reproduction in this domain. Second, I show that alternative replication mechanisms imply interpersonal comparability of strategy payoffs. Giving a meaningful interpretation to such comparisons is not an easy task for many social situations, and thus limits the applicability of EGT in this domain. Third, I argue that giving a new interpretation both to strategy replication and selection solves the issue of interpersonal comparability, but at the costs of making the new interpretation incompatible with natural selection interpretations of EGT. To the extent that social scientists seek such a natural selection interpretation, they face a dilemma: either face the challenge that interpersonal comparisons pose, or give up on the natural selection interpretation. By identifying these tensions, my analysis pleas for greater awareness of the specific purposes of EGT modelling in the social sciences, and for greater sensitivity to the underlying microstructure on which the evolutionary dynamics and other EGT solution concepts supervene.  相似文献   

4.
Selectionism, or the extension of darwinian chance/selection dynamics beyond the individual level, has a long history in biological thought. It has generated important theories in immunology or neurology, and turns out to be a convincing framework to account for the intrinsic stochastic nature of core events in cellular biology. When looking back at the intellectual origins of selectionism, the essay by the German embryologist Wilhelm Roux, Der Kampf der Theile im Organismus (The Struggle of the Parts in the Organism - 1881) might be one, if not the earliest reference after the darwinian revolution. It describes the individual as a multilevel structure, where each level results from a 'darwinian' struggle of its parts (molecules, cells, tissues, organs). But Roux's theory, far from being a simple extension of natural selection, has complex and even conflictual relationships with darwinism. This essay is worth rediscovering as a subtle historical testimony of the evolutionary and developmental life sciences debates of its time. Moreover, some of its theses may also enrich some current debates among evolutionary biologists over levels of selection, and among cellular and molecular biologists over the status of determinism in biology today.  相似文献   

5.
Personality exists in non-human animals and can impact fitness. There is, however, a shortage of empirical studies in certain areas within the field, and fundamental evolutionary theory on personality remains largely untested. For example, little is known on how variation in personality is maintained over evolutionary time. Theory suggests that fluctuating selection pressures due to spatiotemporal variation in conditions, e.g. food availability, is a possible mechanism and a few studies have shown that the success of different personality types varies with spatiotemporal conditions. However, it remains unknown whether different mechanisms can maintain personality within a species. Here we use a reintroduction programme for the critically endangered European mink (Mustela lutreola) to test whether multiple personality trait domains (boldness, exploration and sociability) affected survival in two different years and islands. This was done through pre-release personality tests and post-release radio-tracking monitoring. Survival was positively correlated with boldness, whereas the relationship with exploration was either negative or positive depending on year/island. The results show a complex relationship between personality and survival and suggest that exploration can be maintained over evolutionary time via spatiotemporal variation in conditions. However, in contrast to exploration, boldness did not vary spatiotemporally and sociability had no impact on survival. This indicates that different personality trait domains might be maintained by different mechanisms. To date, personality has been studied primarily within behavioural sciences, but through empirical findings we highlight the importance of personality also in ecology and conservation biology.  相似文献   

6.
The evolutionary selection circuits model of learning has been specified algorithmically. The basic structural components of the selection circuits model are enzymatic neurons, that is, neurons whose firing behavior is controlled by membrane-bound macromolecules called excitases. Learning involves changes in the excitase contents of neurons through a process of variation and selection. In this paper we report on the behavior of a basic version of the learning algorithm which has been developed through extensive interactive experiments with the model. This algorithm is effective in that it enables single neurons or networks of neurons to learn simple pattern classification tasks in a number of time steps which appears experimentally to be a linear function of problem size, as measured by the number of patterns of presynaptic input. The experimental behavior of the algorithm establishes that evolutionary mechanisms of learning are competent to serve as major mechanisms of neuronal adaptation. As an example, we show how the evolutionary learning algorithm can contribute to adaptive motor control processes in which the learning system develops the ability to reach a target in the presence of randomly imposed disturbances.  相似文献   

7.
Although evolutionary theory is considered to be a unifying foundation for biological education, misconceptions about basic evolutionary processes such as natural selection inhibit student understanding. Even after instruction, students harbor misconceptions about natural selection, suggesting that traditional teaching methods are insufficient for correcting these confusions. This has spurred an effort to develop new teaching methods and tools that effectively confront student misconceptions. In this study, we designed an interactive computer-based simulated laboratory to teach the principles of evolution through natural selection and to correct common student misconceptions about this process. We quantified undergraduate student misconceptions and understanding of natural selection before and after instruction with multiple-choice and open-response test questions and compared student performance across gender and academic levels. While our lab appeared to be effective at dispelling some common misconceptions about natural selection, we did not find evidence that it was as successful at increasing student mastery of the major principles of natural selection. Student performance varied across student academic level and question type, but students performed equally across gender. Beginner students were more likely to use misconceptions before instruction. Advanced students showed greater improvement than beginners on multiple-choice questions, while beginner students reduced their use of misconceptions in the open-response questions to a greater extent. These results suggest that misconceptions can be effectively addressed through computer-based simulated laboratories. Given the level of misconception use by beginner and advanced undergraduates and the gains in performance recorded after instruction at both academic levels, natural selection should continue to be reviewed through upper-level biology courses.  相似文献   

8.
In natural sciences, the advance of evolutionary thought and growth of empirical knowledge are not strictly correlated. The state of theory primarily tends to be controlled by a mode of collective thinking that historically dominates a given branch of science. This particularly holds true for the natural selection concept, which has two alternative interpretations known as the genetic and epigenetic theories of evolution. The final result of their competition, albeit predictable, will not be based upon any kind of “crucial evidence” giving advantage to either of them. The above result will be in fact attained as soon as the evolutionary biology can overcome the tradition of mosaic thinking which enables the incompatible concepts to be combined. In this respect, the key point to be realized is that the idea of corpuscular determination of the ontogeny is incompatible with understanding the development as a systemically controlled process.  相似文献   

9.
In biological systems, as in human society, competing social groups may depend heavily on a small number of volunteers to advance the group’s prospects. This phenomenon can be understood as the solution to an evolutionary public goods game, in which a beneficent individual or a small number of individuals may place the highest value on group success and contribute the most to achieving it while profiting very little. Here we demonstrate that this type of solution, recently recognized in the social sciences, is evolutionarily stable and evolves in evolutionary simulations sensitive to alternative ways of gaining fitness beyond the present social group. The public goods mechanism may help explain biological voluntarism in cases like predator inspection and foraging on behalf of non-relatives and may determine the extent of commitment to group welfare at different intensities of group selection.  相似文献   

10.
The impact of philosophy of science on biology is slight. Evolutionary biology, however, is nowadays an exception. The status of the neo-Darwinian (synthetic) theory of evolution is seriously challenged from a methodological perspective. However, the methodology used in the relevant discussions is plainly defective. A correct application of methodology to evolutionary theory leads to the following conclusions. (a) The theory of natural selection (the core of neo-Darwinism) is unfalsifiable in a strict sense of the term. This, however, does not militate against the theory, because no scientific theory whatever is testable in this way. Under a more liberal testability criterion, the theory is surely testable. None the less, certain (not all) research programs may tend to make the theory untestable in practice. (b) It has often been argued that the tautologous character of the principle of natural selection, allegedly the focus of evolutionary theory, makes the theory untestable through circular reasoning. Actually, the principle is only a tautology if ‘fitness’ is wrongly defined in terms of actual survival. But even then circular reasoning need not ensue. (c) Evolutionary principles do not permit, without additional information, the derivation of statements about evolutionary events concerning particular species or populations. If this were a reason to criticize the theory (as has been argued in the literature), any other scientific theory would be inadequate by the same token.  相似文献   

11.
Alfred Russel Wallace The British naturalist Alfred Russel Wallace (1823–1913), well known as co‐discoverer of the “Darwinian” principle of natural selection, came from an ordinary background. Wallace left school aged 14 and never attended University. He became a land surveyor and studied, in his spare time, the works of the most famous naturalists of his age. After extensive expeditions (Amazon, 1848–1852; Southeast Asia, 1854–1862), Wallace spent the rest of his life in England as a free‐lance science writer. His contributions to systematics (he discovered/described many new species), evolutionary biology, zoogeography, anthropology and other branches of the live sciences are summarized in his 22 books and ca. 700 papers. Since Wallace became an adherent of spiritualism and mixed up supernatural phenomena with scientific facts in some of his later books, he remains a controversial figure in the history of the life sciences.  相似文献   

12.
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix ‘good genes’ and purge ‘bad genes’, then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95‐generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.  相似文献   

13.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

14.
Recently at least two papers have appeared that look at cancer from an evolutionary perspective. That cancer has a negative effect on fitness needs no argument. However, cancer origination is not an isolated process, but the potential for it is linked in diverse ways to other genetically determined developmental events, complicating the way selection acts on it, and through it on the evolution of development. The two papers take a totally different line. Kavanagh argues that anti-cancer selection has led to developmental constraints. Leroi et al. argue that cancer is a side-effect of recent evolutionary changes that usually will disappear over time through anti-cancer selection. Here we place the papers in a wider perspective, and in so doing discuss various alternative developmental links cancer may have together with their evolutionary implications.  相似文献   

15.
16.
Not long after the introduction of evolutionary stable strategy (ESS) concept, it was noticed that dynamic selection did not always lead to the establishment of the ESS. The concept of continuously stable strategy (CSS) was thereafter developed. It was generally accepted that dynamic selection leads to the establishment of an ESS if it is a CSS. Examination of an evolutionary stability concept which is called neighborhood invader strategy (NIS) shows that it may be impossible for an ESS to be established through dynamic selection even if it is a CSS and no polymorphisms occur. We will examine the NIS concept and its implications for two evolutionary game models: root-shoot allocation in plant competition and Lotka–Volterra competition. In the root-shoot model we show that an ESS will be attained through dynamic selection if it is a NIS. Similarly for the Lotka–Volterra model, we show that an ESS will be attained through dynamic selection even if protected dimorphisms occur during the evolutionary process if it is an NIS.  相似文献   

17.
The concept of time is critical in evolutionary thought, but rarely has it been considered as an object of theoretical research by evolutionary biologists. Evolution is an organism's possibility of access to the future; in other words, evolutionary reward is paid out as increased time. Replicating entities are granted time, but for them, time only serves to allow replication and evolution, and to further expand the frontier of time. The present review discusses the possible influence of considering time not as a pure dimension (or an a priori intuitive condition of human experience) but as an object in itself. At least as a metaphor, time can be considered as a self-replicating entity rooted in physical (including biological) beings, with the result of producing dimensional time. Time self-replication forces beings to replicate, which, in turn, further sustains the replication of time. In that sense, time-replication may constitute the driving force, i.e., the basic engine, providing directional energy to the evolutionary process. The philosophical roots, caveats, and perspectives of this hypothesis are presented here. The metaphor of replicating-time plays with the possibility of viewing time not as a merely regulatory component of scientific inquiry but instead, as a real and creative constituent of nature and, for this reason, an object worthy of research in the natural sciences.  相似文献   

18.
Proponents of two axioms of biological evolutionary theory have attempted to find justification by reference to nonequilibrium thermodynamics. One states that biological systems and their evolutionary diversification are physically improbable states and transitions, resulting from a selective process; the other asserts that there is an historically constrained inherent directionality in evolutionary dynamics, independent of natural selection, which exerts a self-organizing influence. The first, the Axiom of Improbability, is shown to be nonhistorical and thus, for a theory of change through time, acausal. Its perception of the improbability of living states is at least partially an artifact of closed system thinking. The second, the Axiom of Historically Determined Inherent Directionality, is supported evidentially and has an explicit historical component. Historically constrained dynamic populations are inherently nonequilibrium systems. It is argued that living, evolving systems, when considered to be historically constrained nonequilibrium systems, do not appear improbable at all. Thus, the two axioms are not compatible. Instead, the Axiom of Improbability is considered to result from an unjustified attempt to extend the contingent proximal actions of natural selection into the area of historical, causal explanations. It is thus denied axiomatic status, and the effects of natural selection are subsumed as an additional level of constraint in an evolutionary theory derived from the Axiom of Historically Determined Inherent Directionality.  相似文献   

19.
20.
Strong reciprocity, human cooperation, and the enforcement of social norms   总被引:11,自引:0,他引:11  
This paper provides strong evidence challenging the self-interest assumption that dominates the behavioral sciences and much evolutionary thinking. The evidence indicates that many people have a tendency to voluntarily cooperate, if treated fairly, and to punish noncooperators. We call this behavioral propensity “strong reciprocity” and show empirically that it can lead to almost universal cooperation in circumstances in which purely self-interested behavior would cause a complete breakdown of cooperation. In addition, we show that people are willing to punish those who behaved unfairly towards a third person or who defected in a Prisoner’s Dilemma game with a third person. This suggests that strong reciprocity is a powerful device for the enforcement of social norms involving, for example, food sharing or collective action. Strong reciprocity cannot be rationalized as an adaptive trait by the leading evolutionary theories of human cooperation (in other words, kin selection, reciprocal altruism, indirect reciprocity, and costly signaling theory). However, multilevel selection theories of cultural evolution are consistent with strong reciprocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号