首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vitamin C homeostasis in skeletal muscle cells   总被引:3,自引:0,他引:3  
In skeletal muscle, vitamin C not only enhances carnitine biosynthesis but also protects cells against ROS generation induced by physical exercise. The ability to take up both ascorbic and dehydroascorbic acid from the extracellular environment, together with the ability to recycle the intracellular vitamin, maintains high cellular stores of ascorbate. In this study, we examined vitamin C transport and recycling, by using the mouse C2C12 and rat L6C5 muscle cell lines, which exhibit different sensitivity to oxidative stress and GSH metabolism. We found that: (1) both cell lines express SVCT2, whereas SVCT1 is expressed at very low levels only in proliferating L6C5 cells; furthermore L6C5 myoblasts are more efficient in ascorbic acid transport than C2C12 myoblasts; (2) C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction; (3) differentiation is paralleled by decreased ascorbic acid and dehydroascorbic acid transport and reduction and increased ascorbyl free radical reduction; (4) differentiated cells are more responsive to oxidative stress induced by glutathione depletion; indeed, myotubes showed increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction. From our data, SVCT2 and NADPH-thioredoxin-dependent DHA reduction appears to belong to an inducible system activated in response to oxidative stress.  相似文献   

3.
Engineering vascularized skeletal muscle tissue   总被引:13,自引:0,他引:13  
One of the major obstacles in engineering thick, complex tissues such as muscle is the need to vascularize the tissue in vitro. Vascularization in vitro could maintain cell viability during tissue growth, induce structural organization and promote vascularization upon implantation. Here we describe the induction of endothelial vessel networks in engineered skeletal muscle tissue constructs using a three-dimensional multiculture system consisting of myoblasts, embryonic fibroblasts and endothelial cells coseeded on highly porous, biodegradable polymer scaffolds. Analysis of the conditions for induction and stabilization of the vessels in vitro showed that addition of embryonic fibroblasts increased the levels of vascular endothelial growth factor expression in the construct and promoted formation and stabilization of the endothelial vessels. We studied the survival and vascularization of the engineered muscle implants in vivo in three different models. Prevascularization improved the vascularization, blood perfusion and survival of the muscle tissue constructs after transplantation.  相似文献   

4.
It is thought that every cell in the body expresses the vitamin D receptor, and therefore vitamin D may play a role in health and homeostasis of every organ system, including skeletal muscle. Human, animal, and cell culture studies have collectively shown that vitamin D affects muscle strength and function. Vitamin D functions in a plethora of cellular processes in skeletal muscle including calcium homeostasis, cell proliferation, cell differentiation, fiber size, prevention of fatty degeneration, protection against insulin resistance and arachidonic acid mobilization. These processes appear to be mediated by several signaling pathways affected by vitamin D. This review aims to explore the effects of vitamin D on skeletal muscle in each model system and to delineate potential cell signaling pathways affected by vitamin D.  相似文献   

5.
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

6.
骨骼肌的内分泌功能   总被引:7,自引:1,他引:7  
长期以来,骨骼肌被认为是一种效应器官,接受神经和体液的调节。近年大量实验研究资料发现骨骼肌也具有分泌活性物质的功能,能表达、合成和分泌多种生物信号分子,包括调节肽、细胞因子和生长因子等,也是一种重要的内分泌器官。骨骼肌分泌的活性物质以旁分泌和/或自分泌方式调节骨骼肌的生长、代谢和运动功能;甚至以血液循环内分泌的方式调节机体远隔器官组织的功能。骨骼肌生成和分泌的活性物质在运动系统疾病和某些全身性疾病的发病中具有重要的作用。本文将对骨骼肌分泌的主要活性物质及其生理和病理生理学意义进行综述。  相似文献   

7.
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.  相似文献   

8.
The development of the skeletal muscle tissue has been studied cytophotometrically, electron microscopically and radioautographically at administration of actinomycin-D (0.2 mcg/g) to the 11- and 15-day-old chick embryos). Different character of restorative processes under the conditions when RNA synthesis is disturbed by actinomycin-D administration is noted: before morphologically distinguished myosatellites appear (before the 13th-14th day of embryogenesis) and after myosatellites appearance (from the 14th-15th day of development). Evidently, the myosatellites are the muscle cells resistive to certain external factors, they ensure an effective adaptation of the skeletal muscle tissue to unfavourable effects. When the satellite cells appear, the skeletal muscle tissue acquires a new quality as a dynamically stable cambial system.  相似文献   

9.
The arrangement and distribution of connective tissue in six different skeletal muscles and smooth muscle was examined by scanning electron microscopy. The endomysial arrangement of collagen was similar in all types of muscle and consisted of three components: (1) myocyte-myocyte connectives; (2) myocyte-capillary connectives; and (3) a weave network of collagen intimately associated with the basal laminae of the myocytes. The perimysium of the different muscles was qualitatively similar but quantitatively dissimilar. The perimysium consisted of large tendon-like bundles of interwoven collagen which connected with the dense weave collagen that surrounded groups of muscles. The arrangement of the collagen in the perimysium and endomysium would explain differences in the mechanical properties of the different muscle. The contribution of the connective tissue to mechanical properties of muscle is discussed.  相似文献   

10.
Growing evidence suggests that intracellular vitamin D receptors are present in skeletal muscle tissue mediating vitamin D hormone response. The aim of the work reported here was to investigate the in situ expression of 1,25-dihydroxy vitamin D3 receptor in human skeletal muscle tissue. Intraoperative periarticular muscle biopsies were taken from 20 female orthopaedic patients (17 middle-aged and elderly patients receiving total hip arthroplasty due to osteoarthritis of the hip or an osteoporotic hip fracture and 3 young patients who received back surgery). The immunohistological distribution of the vitamin D3 receptor was investigated using a monoclonal rat antibody to the receptor (Clone Nr. 9A7). The receptor-positive nuclei were quantified by counting 500 nuclei per biopsy. Strong intranuclear immunostaining of the vitamin D receptor was detected in human muscle cells. Biopsies of hip patients had significantly fewer receptor-positive nuclei compared to those of back surgery patients (Mann–Whitney U-test: p = 0.0025). VDR expression (number of antigen-positive nuclei) was significantly correlated with age (coefficient of correlation = 0.46; p = 0.005), but not with 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D levels. The data clearly demonstrate presence of nuclear 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle. To our knowledge this is the first in situ detection of the receptor in human skeletal muscle. The difference in the expression of the receptor between hip and spinal muscle biopsies might be explained by age or location. Further research is needed in order to evaluate whether vitamin D3 receptor expression in human skeletal muscle is age-dependent and varies between different muscles.  相似文献   

11.
Serum and post-microsomal supernatants of human lymphocyte, erythrocyte, skeletal muscle and parathyroid adenoma homogenates were examined for specific binding of 25-hydroxycholecalciferol (25-OHD3) and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3). Muscle, lymphocytes and parathyroid adenomata extracts contained a 6-S 25-OHD3-binding protein which was not found in erythrocyte extracts, and which was distinct from the smaller serum transport α-globulin. A cathodal, 1,25-(OH)2D3-binding protein, which sedimented at 3–4 S was also detected in parathyroid tissue. These observations suggest the possibility of direct physiologic interaction between vitamin D metabolites and nucleated human tissues other than intestine and bone.  相似文献   

12.
13.
Vitamin D target proteins: function and regulation   总被引:13,自引:0,他引:13  
  相似文献   

14.
We examined the effects of ischemia (ISC) alone and with low-intensity exercise (ISC+EX) on growth hormone (GH) and muscle function responses. Nine men (22 +/- 0.7 yr) completed 3 study days: an ISC day (thigh cuff inflated five times, 5 min on, 3 min off), an ISC+EX day [knee extension at 20% maximal voluntary contraction (MVC) with ISC], and a control day. MVCs and submaximal contraction tasks (15 and 30% MVC) were performed before and following the perturbations. Surface electromyogram signals were collected from thigh muscles and analyzed for median frequency and root mean square alterations. Blood samples were collected every 10 min (190 min total) and analyzed for GH concentrations. Peak GH concentrations and GH area under the curve were highest (P < 0.01) on the ISC+EX day (7.5 microg/l and 432 microg.l(-1).min(-1), respectively) compared with the ISC (0.9 microg/l and 76.4 microg.l(-1).min(-1)), and CON (1.1 microg/l and 83.8 microg.l(-1).min(-1)) days. A greater GH pulse amplitude, mass/pulse, and production rate were also observed on the ISC+EX day (P < 0.05). Following the intervention, force production decreased on the ISC and ISC+EX days by 16.1 and 55.8%, respectively, and did not return to baseline values within 5 min of recovery. During the submaximal contractions, median frequency shifted to lower frequencies for most of the muscles examined, and root mean square electromyogram was consistently elevated for ISC+EX day. In conclusion, ISC coupled with resistance exercise acutely increases GH levels and reduces MVC, whereas ISC alone decreases force capacity, without alterations in GH levels.  相似文献   

15.
Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle.  相似文献   

16.
Alanine production by skeletal muscle in tissue culture was studied using an established myogenic line (L6) of rat skeletal muscle cells. Correlation analyses were performed on rates of metabolism of alanine, glucose, lactate and pyruvate over incubation periods up to 96 h. Alanine production did not correlate significantly with glucose utilization (r = 0.24, P < 0.20). Alanine production, however, did correlate with lactate production (r = 0.72, P < 0.0005) as well as medium (r = 0.50, P < 0.025) and intracellular (r = 0.85, P < 0.0005) pyruvate concentrations. The intercepts of the latter two correlation analyses indicated that when medium or cell pyruvate fell below 0.28 mM or 1 nmol/mg protein, respectively, net alanine consumption occurred. Alanine synthesis also correlated (r = 0.71, P < 0.0005) with the percent change in the cell mass action ratio for the sum of the alanine and aspartate aminotransferase reactions, i.e., [alanine] [malate]/[aspartate] [lactate]. These results suggest that alanine production is not necessarily linked to the rate of glucose utilization but rather to pyruvate overflow above a critical intracellular level; under conditions of pyruvate overflow, alanine synthesis is driven by the tendency to establish equilibrium between metabolites of the linked amino acid transaminases in skeletal muscle.  相似文献   

17.
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.  相似文献   

18.
19.
 Indirect indices of exercise-induced human skeletal muscle damage and connective tissue breakdown were studied following a single bout of voluntary eccentric muscle contractions. Subjects (six female, two male), mean (SD) age 22 (2) years performed a bout of 50 maximum voluntary eccentric contractions of the knee extensors of a single leg. The eccentric exercise protocol induced muscle soreness (P < 0.05 Wilcoxon test), chronic force loss, and a decline in the 20:100 Hz percutaneous electrical myostimulation force ratio [P < 0.01, repeated measures analysis of variance (ANOVA)]. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities were elevated (P < 0.01, repeated measures ANOVA) following the bout. The mean (SD) CK and LDH levels recorded 3 days post-exercise were 2815 (4144) IU · l–1 and 375 (198) IU · l–1, respectively. Serum alkaline phosphatase activity showed no changes throughout the study, and a non-significant increase (P = 0.058, repeated measures ANOVA) in pyridinoline was recorded following the bout. Urinary hydroxyproline (HP) and hydroxylysine (HL) excretion, expressed in terms of creatinine (Cr) concentration, increased after exercise (P < 0.05 and P < 0.01, respectively, repeated measures ANOVA). An increased HP:Cr was recorded 2 days post-exercise and HL:Cr was increased above baseline on days 2, 5, and 9 post-exercise. This indirect evidence of exercise-induced muscle damage suggests that myofibre disruption was caused by the eccentric muscle contractions. Elevated urine concentrations of indirect indices of collagen breakdown following eccentric muscle contractions suggests an increased breakdown of connective tissue, possibly due to a localised inflammatory response. Accepted: 9 October 1996  相似文献   

20.
The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle stem cells results in the abrogation of adult muscle regenerative potential. We demonstrate that APC removal in adult muscle stem cells abolishes cell cycle entry and leads to cell death. By using double knockout strategies, we further prove that this phenotype is attributable to overactivation of β-catenin signaling. Our results demonstrate that in muscle stem cells, APC dampens canonical Wnt signaling to allow cell cycle progression and radically diverge from previous observations concerning stem cells in actively self-renewing tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号