首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In interphase cells, microtubules (MT) form an extended radial array. The length of individual MTs in living cells exhibits substantial stochastic fluctuations, while the average length distribution in a cell remains nearly constant. We present a quantitative model that describes the relation of the MT length and dynamics in the steady state in the cell using the minimal set of parameters (cell radius, tubulin concentration, critical concentration for plus-end elongation and the number of nucleation sites). The MT array is approximated as a radial system, where minus-ends of MTs are associated with nucleation sites on the centrosome, while plus ends grow and shorten. Dynamic instability of MT plus ends is approximated as a random walk process with boundary conditions; the behavior of an MT array is quantified using diffusion and drift coefficients (Vorobjev et al., 1997; Vorobjev et al., 1999). We show that the establishment of the extended steady-state array could be accomplished solely by the limitation of MT growth by the cell margin. For the cell radius, tubulin concentration, critical concentration for plus-end elongation, and the number of nucleation sites we determined the reference point in the parameter space where plus ends of individual MTs, on average, neither elongate nor shorten. In this case, the average MT length is equal to the half of the cell radius. When any parameter is shifted from its reference value, MTs become longer or shorter and, consequently, acquire a positive or negative drift of their plus ends. In the vicinity of the reference point, a change in any parameter has a major effect on the MT length and a rather small effect on the drift. When the average MT length is close to the cell radius, the drift of free plus ends becomes substantial, resulting in processive growth of individual MTs in the internal cytoplasm, accompanied by the apparent stabilization of plus ends at the cell margin. Under these conditions small changes in parameters have a significant impact on the magnitude of the drift. Experimental analysis of MT plus-end dynamics in different cultured cells shows that, in most cases, plus ends display positive drift, which, in the framework of the presented model, is in agreement with the simultaneous presence of long MTs.  相似文献   

2.
3.
The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.  相似文献   

4.
The cortical microtubule array: from dynamics to organization   总被引:8,自引:0,他引:8       下载免费PDF全文
Dixit R  Cyr R 《The Plant cell》2004,16(10):2546-2552
  相似文献   

5.
The effect of podophyllotoxin on microtubule dynamics   总被引:2,自引:0,他引:2  
We have investigated the effects of podophyllotoxin on the dynamic properties of microtubules assembled from pure tubulin dimer. Excess podophyllotoxin causes the complete disassembly of microtubules, through formation of a tubulin-GTP-podophyllotoxin ternary complex with a dissociation rate constant of 160 s-1 at 37 degrees C, similar to that found upon extensive isothermal dilution in this buffer system. Addition of substoichiometric concentrations of podophyllotoxin causes partial disassembly of microtubules through production of an equivalent amount of the ternary complex. Microtubule length measurements and incorporation of [3H]GTP-tubulin dimer show that podophyllotoxin can suppress the dynamic instability of tubulin dimer microtubules and that it acts substoichiometrically in so doing. We interpret the action of substoichiometric podophyllotoxin on microtubule ends in terms of effects on interconversion of growing and shrinking microtubules in a dynamic system in which tubulin-GTP-podophyllotoxin is kinetically analogous to tubulin-GTP in addition and to tubulin-GDP in dissociation. The ability to suppress dynamic instability may be one way in which drugs such as podophyllotoxin, acting at relatively low concentrations, are able to arrest cell growth and development in a selective way, without necessarily affecting the integrity of the major part of the cytoskeletal microtubule network.  相似文献   

6.
c-Jun NH(2)-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizing proteins SCG10, SCLIP, RB3, and RB3' interact tightly with JNK. Furthermore, SCG10 is also phosphorylated by JNK in vivo on sites that regulate its microtubule depolymerizing activity, serines 62 and 73. SCG10-S73 phosphorylation is significantly decreased in JNK1-/- cortex, indicating that JNK1 phosphorylates SCG10 in developing forebrain. JNK phosphorylation of SCG10 determines axodendritic length in cerebrocortical cultures, and JNK site-phosphorylated SCG10 colocalizes with active JNK in embryonic brain regions undergoing neurite elongation and migration. We demonstrate that inhibition of cytoplasmic JNK and expression of SCG10-62A/73A both inhibited fluorescent tubulin recovery after photobleaching. These data suggest that JNK1 is responsible for regulation of SCG10 depolymerizing activity and neurite elongation during brain development.  相似文献   

7.
Positioning of a radial array of microtubules (MTs) in the cell centre is crucial for cytoplasmic organization, but the mechanisms of such centering are difficult to study in intact cells that have pre-formed radial arrays. Here, we use cytoplasmic fragments of melanophores, and cytoplasts of BS-C-1 cells to study MT centering mechanisms. Using live imaging and computer modelling, we show that the MT aster finds a central location in the cytoplasm by moving along spontaneously nucleated non-astral MTs towards a point at which MT nucleation events occur equally on all sides. We hypothesize that similar mechanisms, in the presence of the centrosome, contribute to this centering mechanism and ensure the robustness of cytoplasmic organization.  相似文献   

8.
Microtubule nucleation in interphase plant cells primarily occurs through branching from pre-existing microtubules at dispersed sites in the cell cortex. The minus ends of new microtubules are often released from the sites of nucleation, and the free microtubules are then transported to new locations by polymer treadmilling. These nucleation-and-release events are characteristic features of plant arrays in interphase cells, but little is known about the spatiotemporal control of these events by nucleating protein complexes. We visualized the dynamics of two fluorescently-tagged γ-tubulin complex proteins, GCP2 and GCP3, in Arabidopsis thaliana. These probes labelled motile complexes in the cytosol that transiently stabilized at fixed locations in the cell cortex. Recruitment of labelled complexes occurred preferentially along existing cortical microtubules, from which new microtubule was synthesized in a branching manner, or in parallel to the existing microtubule. Complexes localized to microtubules were approximately 10-fold more likely to display nucleation than were complexes recruited to other locations. Nucleating complexes remained stable until daughter microtubules were either completely depolymerized from their plus ends or released by katanin-dependent severing activity. These observations suggest that the nucleation complexes are primarily activated on association with microtubule lattices, and that nucleation complex stability depends on association with daughter microtubules and is regulated in part by katanin activity.  相似文献   

9.
Comment on: Mukherjee S, et al. Cell Cycle 2012; 11:2359-66.  相似文献   

10.
Comment on: Mukherjee S, et al. Cell Cycle 2012; 11:2359-66.Typical cells contain a dense array of microtubules that serves as a structural backbone and also provides a substrate against which molecular motor proteins generate force. Cells transitioning through the cell cycle or undergoing significant morphological changes must be able to tear apart the microtubule array and reconstruct it into new configurations, either partially or completely. The microtubule field was revolutionized in the 1980s with the introduction of the dynamic instability model,1 now broadly recognized as a fundamental mechanism by which microtubule populations are reconfigured.2 Dynamic instability involves the catastrophic disassembly of microtubules, generally from their plus ends, as well as the rapid reassembly of microtubules and selective stabilization of particular ones. Microtubules can be stabilized along their length by binding to various proteins and can be attached at their minus ends to structures such as the centrosome and “captured” at their plus ends by proteins in the cell’s cortex.2 Given the contribution of these stabilizing and anchoring factors, additional mechanisms beyond dynamic instability are required to tear down previous microtubule structures so that new ones can be constructed. Borrowing from the field of economics, we refer to this as creative destruction.Various proteins such as stathmin3 and kinesin-134 contribute to creative destruction by promoting loss of tubulin subunits from the ends of the microtubules. We find especially interesting a category of AAA enzymes called microtubule-severing proteins that use the energy of ATP hydrolysis to yank at tubulin subunits within the microtubule, thereby causing the lattice to break.5 If this occurs along the length of the microtubule, the microtubule will be severed into pieces. If this occurs at either of the two ends of the microtubule, the microtubule will lose subunits from that end. The first discovered and best-studied microtubule-severing proteins are katanin and spastin.Thanks to David Sharp and his colleagues at Albert Einstein College of Medicine, as well as other workers in the field, we now know that cells express at least five other AAA proteins with potential microtubule-severing properties, on the basis of sequence similarity to katanin and spastin in the AAA region.5 Two of these, called katanin-like-1 and katanin-like-2, are very similar to katanin. The three others are similar to one another, collectively termed fidgetins (fidgetin, fidgetin-like-1 and fidgetin-like-2). One possibility is that all seven of the microtubule-severing proteins are regulated similarly and are functionally redundant with one another. A more compelling possibility is that, while there is some functional redundancy, there is also a division of labor, with each severing protein displaying distinct properties and carrying out its own duties. Thus far, Sharp’s studies on mitosis support the latter scenario, with katanin, fidgetin and spastin having characteristic distributions within the spindle, resulting in unique phenotypes when depleted.6In a new article, Sharp’s group has confirmed that fidgetin has microtubule-severing properties. Interestingly, fidgetin depolymerizes microtubules preferentially from the minus end.7 In addition, the new work shows that in human U2OS cells, fidgetin targets to the centrosome, where most minus ends of microtubules are clustered, suggesting a scenario by which fidgetin suppresses microtubule growth from the centrosome as well as attachment to it. Consistent with this scenario, the authors show that experimental depletion of fidgetin reduces that speed of poleward tubulin flux as well as the speed of anaphase A chromatid-to-pole motion and also results in an increase in both the number and length of astral microtubules. Notably, this contrasts with katanin, which favors the plus ends of microtubules, for example, at the chromosome during cell division6 and at the leading edge of motile cells.8The authors close their article by pointing out that microtubule-severing is important beyond mitosis, for example, in the restructuring of the microtubule array in neurons and migrating cells, and we would point to plants as well.9 We previously described a mechanism called “cut and run,” wherein the severing of microtubules is important for motility within the microtubule array, as short microtubules are more mobile than long ones.9 Now, inspired by the work of Sharp and colleagues, we envision “creative destruction” as another way of understanding the crucial roles played by a diversity of microtubule-severing proteins in cells.  相似文献   

11.
Near- and far-uv CD spectra of microtubule protein preparations have been examined to study the possible role of protein conformation in relation to the kinetics of the self-assembly of these proteins into microtubules in vitro. Although tubulin can form conformations with high helical content under apolar solution conditions, this transformation is apparently not involved in self-assembly. There is no major perturbation of tubulin near-uv CD by reagents and solution conditions favoring assembly. Thus, in these preparations, tubulin, as dimer and as oligomer with MAPs, is effectively in the conformation in which it undergoes self-assembly. This conclusion is consistent with a hybrid model of assembly of microtubule protein involving direct incorporation of oligomeric species as an alternative to the condensation polymerization of tubulin dimer as the exclusive assembly mechanism.  相似文献   

12.
13.
To study the role of the centrosome in microtubule organization in interphase cells, we developed a method for obtaining cytoplasts (cells lacking a nucleus) that did or did not contain centrosomes. After drug- induced microtubule depolymerization, cytoplasts with centrosomes made from sparsely plated cells reconstituted a microtubule array typical of normal cells. Under these conditions cytoplasts without centrosomes formed only a few scattered microtubules. This difference in degree of polymerization suggests that centrosomes affect not only the distribution but the amount of microtubules in cells. To our surprise, the extent of microtubules assembled increased with the cell density of the original culture. At confluent density, cytoplasts without centrosomes had many microtubules, equivalent to cytoplasts with centrosomes. The additional microtubules were arranged peripherally and differed from the centrosomal microtubules in their sensitivity to nocodazole. These and other results suggest that the centrosome stabilizes microtubules in the cell, perhaps by capping one end. Microtubules with greater sensitivity to nocodazole arise by virtue of change in the growth state of the cell and may represent free or uncapped polymers. These experiments suggest that the spatial arrangement of microtubules may change by shifting the total tubulin concentration or the critical concentration for assembly.  相似文献   

14.
15.
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.  相似文献   

16.
When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP-alpha-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.  相似文献   

17.
The polymerization of purified tubulin-colchicine complex, which results in polymers different from microtubules under microtubule-promoting conditions, has been characterized. It proceeds as a nucleated condensation polymerization, requires Mg2+, and is inhibited by small concentrations of Ca2+. Polymerization requires GTP binding, but GDP is inhibitory. The GTPase activity proceeds, but it is unlinked to polymerization. The thermodynamic characteristics of the growth reaction, namely, the apparent changes of free energy, enthalpy, entropy, heat capacity, and preferential interaction with H+ and Mg2+, are very similar to those of microtubule assembly. It is proposed that the interactions responsible for the two types of polymerization are very similar and that the molecular mechanism of microtubule inhibition by colchicine may consist in a drug-induced distortion of the normal protomer bonding geometry.  相似文献   

18.
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.  相似文献   

19.
EB1 is a microtubule tip-associated protein that interacts with the APC tumor suppressor protein and components of the dynein/dynactin complex. We have found that the C-terminal 50 and 84 amino acids (aa) of EB1 were sufficient to mediate the interactions with APC and dynactin, respectively. EB1 formed mutually exclusive complexes with APC and dynactin, and a direct interaction between EB1 and p150(Glued) was identified. EB1-GFP deletion mutants demonstrated a role for the N-terminus in mediating the EB1-microtubule interaction, whereas C-terminal regions contributed to both its microtubule tip localization and a centrosomal localization. Cells expressing the last 84 aa of EB1 fused to GFP (EB1-C84-GFP) displayed profound defects in microtubule organization and centrosomal anchoring. EB1-C84-GFP expression severely inhibited microtubule regrowth, focusing, and anchoring in transfected cells during recovery from nocodazole treatment. The recruitment of gamma-tubulin and p150(Glued) to centrosomes was also inhibited. None of these effects were seen in cells expressing the last 50 aa of EB1 fused to GFP. Furthermore, EB1-C84-GFP expression did not induce Golgi apparatus fragmentation. We propose that a functional interaction between EB1 and p150(Glued) is required for microtubule minus end anchoring at centrosomes during the assembly and maintenance of a radial microtubule array.  相似文献   

20.
In eukaryotic cells, the onset of mitosis involves cyclin molecules which interact with proteins of the cdc2 family to produce active kinases. In vertebrate cells, cyclin A dependent kinases become active in S- and pro-phases, whereas a cyclin B-dependent kinase is mostly active in metaphase. It has recently been shown that, when added to Xenopus egg extracts, bacterially produced A- and B-type cyclins associate predominantly with the same kinase catalytic subunit, namely p34cdc2, and induce its histone H1 kinase activity with different kinetics. Here, we show that in the same cell free system, both the addition of cyclin A and cyclin B changes microtubule behavior. However, the cyclin A-dependent kinase does not induce a dramatic shortening of centrosome-nucleated microtubules whereas the cyclin B-dependent kinase does, as previously reported. Analysis of the parameters of microtubule dynamics by fluorescence video microscopy shows that the dramatic shortening induced by the cyclin B-dependent kinase is correlated with a several fold increase in catastrophe frequency, an effect not observed with the cyclin A-dependent kinase. Using a simple mathematical model, we show how the length distributions of centrosome-nucleated microtubules relate to the four parameters that describe microtubule dynamics. These four parameters define a threshold between unlimited microtubule growth and the establishment of steady-state dynamics, which implies that well defined steady-state length distributions can be produced by regulating precisely the respective values of the dynamical parameters. Moreover, the dynamical model predicts that increasing catastrophe frequency is more efficient than decreasing the rescue frequency to reduce the average steady state length of microtubules. These theoretical results are quantitatively confirmed by the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号