首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. We investigated the role of the NAD(P)H oxidase Nox4 in generation of reactive oxygen species (ROS), hypertrophy, and fibronectin expression in a rat model of type 1 diabetes induced by streptozotocin. Phosphorothioated antisense (AS) or sense oligonucleotides for Nox4 were administered for 2 weeks with an osmotic minipump 72 h after streptozotocin treatment. Nox4 protein expression was increased in diabetic kidney cortex compared with non-diabetic controls and was down-regulated in AS-treated animals. AS oligonucleotides inhibited NADPH-dependent ROS generation in renal cortical and glomerular homogenates. ROS generation by intact isolated glomeruli from diabetic animals was increased compared with glomeruli isolated from AS-treated animals. AS treatment reduced whole kidney and glomerular hypertrophy. Moreover, the increased expression of fibronectin protein was markedly reduced in renal cortex including glomeruli of AS-treated diabetic rats. Akt/protein kinase B and ERK1/2, two protein kinases critical for cell growth and hypertrophy, were activated in diabetes, and AS treatment almost abolished their activation. In cultured mesangial cells, high glucose increased NADPH oxidase activity and fibronectin expression, effects that were prevented in cells transfected with AS oligonucleotides. These data establish a role for Nox4 as the major source of ROS in the kidneys during early stages of diabetes and establish that Nox4-derived ROS mediate renal hypertrophy and increased fibronectin expression.  相似文献   

2.
3.
The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.  相似文献   

4.
The study has been designed to investigate the effect of benfotiamine and fenofibrate in diabetes-induced experimental vascular endothelial dysfunction (VED) and nephropathy. The single administration of streptozotocin (STZ) (50 mg/kg, i.p.) produced diabetes, which was noted to develop VED and nephropathy in 8 weeks. The diabetes produced VED by attenuating acetylcholine-induced endothelium dependent relaxation, impairing the integrity of vascular endothelium, decreasing serum nitrite/nitrate concentration and increasing serum TBARS and aortic superoxide anion generation. Further, diabetes altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. The nephropathy was noted to be developed in the diabetic rat that was assessed in terms of increase in serum creatinine, blood urea, proteinuria, and glomerular damage. The benfotiamine (70 mg/kg, p.o.) and fenofibrate (32 mg/kg, p.o.) or lisinopril (1 mg/kg, p.o., a standard agent) treatments were started in diabetic rats after 1 week of STZ administration and continued for 7 weeks. The treatment with benfotiamine and fenofibrate either alone or in combination attenuated diabetes-induced VED and nephropathy. In addition, the combination of benfotiamine and fenofibrate was noted to be more effective in attenuating the diabetes-induced VED and nephropathy when compared to treatment with either drug alone or lisinopril. Treatment with fenofibrate normalizes the altered lipid profile in diabetic rats, whereas benfotiamine treatment has no effect on lipid alteration in diabetic rats. It may be concluded that diabetes-induced oxidative stress, lipids alteration, and consequent development of VED may be responsible for the induction of nephropathy in diabetic rats. Concurrent administration of benfotiamine and fenofibrate may provide synergistic benefits in preventing the development of diabetes-induced nephropathy by reducing the oxidative stress and lipid alteration, preventing the VED and subsequently improving the renal function.  相似文献   

5.
There are about 2.5 million glomeruli in the kidneys each consisting of a barrel of glomerular basement membrane surrounded by glomerular endothelial cells on the inside and glomerular epithelial cells with established foot processes (podocytes) on the outside. Defects in this filtration apparatus lead to glomerular vascular leak or proteinuria. The role of vascular endothelial growth factor (VEGF) in the regulation of glomerular vascular permeability is still unclear. Recent studies indicate that patients receiving anti-VEGF antibody therapy may have an increased incidence of proteinuria. In a different setting, pregnancies complicated by preeclampsia are associated with elevated soluble VEGF receptor 1 protein (sFlt-1), endothelial cell dysfunction and proteinuria. These studies suggest that neutralization of physiologic levels of VEGF, a key endothelial survival factor, may lead to proteinuria. In the present study, we evaluated the potential of anti-VEGF neutralizing antibodies and sFlt-1 in the induction of proteinuria. Our studies demonstrate that anti-VEGF antibodies and sFlt-1 cause rapid glomerular endothelial cell detachment and hypertrophy, in association with down-regulation of nephrin, a key epithelial protein in the glomerular filtration apparatus. These studies suggest that down-regulation or neutralization of circulating VEGF may play an important role in the induction of proteinuria in various kidney diseases, some forms of cancer therapy and also in women with preeclampsia.  相似文献   

6.
Ectopic fat accumulation in the kidneys causes oxidative stress, inflammation and cell death. Dehydrozingerone (DHZ) is a curcumin analog that exhibits antitumour, antioxidant and antidiabetic effects. However, the efficacy of DHZ in diabetic nephropathy (DN) is unknown. Here, we verified the efficacy of DHZ on DN. We divided the experimental animals into three groups: regular diet, 60% high-fat diet (HFD) and HFD with DHZ for 12 weeks. We analysed levels of renal triglycerides and urinary albumin and albumin-creatinine ratio, renal morphological changes and molecular changes via real-time polymerase chain reaction and immunoblotting. Furthermore, high glucose (HG)- or palmitate (PA)-stimulated mouse mesangial cells or mouse podocytes were treated with DHZ for 24 h. As a result, DHZ markedly reduced renal glycerol accumulation and albuminuria excretion through improvement of thickened glomerular basement membrane, podocyte loss and slit diaphragm reduction. In the renal cortex in the HFD group, phospho-AMPK and nephrin expression reduced, whereas arginase 2 and CD68 expression increased; however, these changes were recovered after DHZ administration. Increased reactive oxygen species (ROS) stimulated by HG or PA in podocytes was inhibited by DHZ treatment. Collectively, these findings indicate that DHZ ameliorates DN via inhibits of lipotoxicity-induced inflammation and ROS formation.  相似文献   

7.
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder.  相似文献   

8.
《Free radical research》2013,47(11):1342-1354
Abstract

The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.  相似文献   

9.
Membranous nephropathy is a disease that affects the filtering units of the kidney, the glomeruli, and results in proteinuria accompanied by loss of kidney function. Passive Heymann nephritis is an experimental model that mimics membranous nephropathy in humans, wherein the glomerular epithelial cell (GEC) injury induced by complement C5b-9 leads to proteinuria. We examined the role of cytochrome P450 2B1 (CYP2B1) in this complement-mediated sublytic injury. Overexpression of CYP2B1 in GECs significantly increased the formation of reactive oxygen species, cytotoxicity, and collapse of the actin cytoskeleton following treatment with anti-tubular brush-border antiserum (anti-Fx1A). In contrast, silencing of CYP2B1 markedly attenuated anti-Fx1A-induced reactive oxygen species generation and cytotoxicity with preservation of the actin cytoskeleton. Gelsolin, which maintains an organized actin cytoskeleton, was significantly decreased by complement C5b-9-mediated injury but was preserved in CYP2B1-silenced cells. In rats injected with anti-Fx1A, the cytochrome P450 inhibitor cimetidine blocked an increase in catalytic iron and ROS generation, reduced the formation of malondialdehyde adducts, maintained a normal distribution of nephrin in the glomeruli, and provided significant protection at the onset of proteinuria. Thus, GEC CYP2B1 contributes to complement C5b-9-mediated injury and plays an important role in the pathogenesis of passive Heymann nephritis.  相似文献   

10.
NADPH oxidase (NOX) is a predominant source of reactive oxygen species (ROS), and the activity of NOX, which uses NADPH as a common rate-limiting substrate, is upregulated by prolonged dietary salt intake. β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), decreases the cellular NAD(P)H/NAD(P)(+) ratio via activation of NQO1. In this study, we evaluated whether NQO1 activation by βL modulates salt-induced renal injury associated with NOX-derived ROS regulation in an animal model. Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet were used to investigate the renoprotective effect of NQO1 activation. βL treatment significantly lowered the cellular NAD(P)H:NAD(P)(+) ratio and dramatically reduced NOX activity in the kidneys of HS diet-fed DS rats. In accordance with this, total ROS production and expression of oxidative adducts also decreased in the βL-treated group. Furthermore, HS diet-induced proteinuria and glomerular damage were markedly suppressed, and inflammation, fibrosis, and apoptotic cell death were significantly diminished by βL treatment. This study is the first to demonstrate that activation of NQO1 has a renoprotective effect that is mediated by NOX activity via modulation of the cellular NAD(P)H:NAD(P)(+) ratio. These results provide strong evidence that NQO1 might be a new therapeutic target for the prevention of salt-induced renal injury.  相似文献   

11.
Diabetic nephropathy is now the commonest cause of end stage renal disease and accounts for 30-40% of all patients requiring renal replacement therapy. Furthermore, the incidence of diabetic nephropathy continues to increase, in part due to the improved survival of type 2 diabetic patients as the cardiovascular mortality in this group declines (Ritz and Stefanski, 1996). Clinically incipient nephropathy is first manifest by the onset of persistent microalbuminuria, after which, overt diabetic nephropathy is heralded by the appearance of persistent proteinuria. Subsequently, there is a progressive decline in glomerular filtration rate (GFR) resulting, within 5 years, in end stage renal disease in 50% of patients (Hasslacher et al., 1989). The pathology of the renal lesions are similar in type I and II diabetes (Taft et al., 1994), although it has been suggested that there is more heterogeneity in type II diabetes (Chihara et al., 1986). Studies analysing structural-functional relationships have demonstrated that the development of proteinuria correlates with the degree of mesangial expansion (Mauer et al., 1984; White and Bilous, 2000). Although diabetic nephropathy was traditionally considered a primarily glomerular disease, it is now widely accepted that the rate of deterioration of function correlates best with the degree of renal tubulointerstitial fibrosis (Mauer et al., 1984, Bohle et al., 1991). This suggests that although in the majority of patients the primary event is a condition manifest by glomerular changes resulting in proteinuria, the long-term outcome is determined by events in the renal interstitium. With the increasing awareness of the importance of these pathological interstitial changes, interest has focused on the role of cells, such as the epithelial cells of the proximal tubule (PTC) or the interstitial myofibroblast, in the initiation of fibrosis. The aim of the present review is to analyse the available data supporting the role for the PTC in orchestrating renal interstitial fibrosis in diabetic nephropathy as a result of glucose-dependent alterations in PTC function. The potential for subsequent effects on PTC-fibroblast cross-talk will also be considered.  相似文献   

12.
Animal models of spontaneous diabetic kidney disease   总被引:10,自引:0,他引:10  
Kidney disease, characterized by proteinuria and glomerular lesions, is a common complication of spontaneous diabetes mellitus in many animal species. It occurs in animals with hypoinsulinemia, hyperinsulinemia, or impaired glucose tolerance. The renal functional and structural abnormalities in spontaneously diabetic animals resemble human diabetic nephropathy in many respects. Mesangial expansion and glomerular basement membrane thickening, two structural hallmarks of diabetic glomerulopathy in humans, are the most frequently encountered lesions in animals. In addition, a nodular form of mesangial expansion that resembles but is not identical with human nodular glomerulosclerosis or the Kimmelstiel-Wilson lesion has been observed in some animal models. Other abnormalities, such as exudative hyaline lesions and arteriolar hyalinosis, have also been noted occasionally in other models. Although diabetic animals may develop kidney disease that resembles human diabetic nephropathy, no single animal model develops renal changes identical to those seen in humans. Nonetheless, animal models with spontaneous diabetic kidney disease may be useful for investigating the mechanisms of development of diabetic nephropathy and the effects of various treatment modalities on the progression of renal disease.  相似文献   

13.
NADPH oxidase-derived reactive oxygen species (ROS) have been reported to activate NLRP3 inflammasomes resulting in podocyte and glomerular injury during hyperhomocysteinemia (hHcys). However, the mechanism by which the inflammasome senses ROS is still unknown in podocytes upon hHcys stimulation. The current study explored whether thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin and ROS sensor, mediates hHcys-induced NLRP3 inflammasome activation and consequent glomerular injury. In cultured podocytes, size exclusion chromatography and confocal microscopy showed that inhibition of TXNIP by siRNA or verapamil prevented Hcys-induced TXNIP protein recruitment to form NLRP3 inflammasomes and abolished Hcys-induced increases in caspase-1 activity and IL-1β production. TXNIP inhibition protected podocytes from injury as shown by normal expression levels of podocyte markers, podocin and desmin. In vivo, adult C57BL/6J male mice were fed a folate-free diet for 4 weeks to induce hHcys, and TXNIP was inhibited by verapamil (1 mg/ml in drinking water) or by local microbubble-ultrasound TXNIP shRNA transfection. Evidenced by immunofluorescence and co-immunoprecipitation studies, glomerular inflammasome formation and TXNIP binding to NLRP3 were markedly increased in mice with hHcys but not in TXNIP shRNA-transfected mice or those receiving verapamil. Furthermore, TXNIP inhibition significantly reduced caspase-1 activity and IL-1β production in glomeruli of mice with hHcys. Correspondingly, TXNIP shRNA transfection and verapamil attenuated hHcys-induced proteinuria, albuminuria, glomerular damage, and podocyte injury. In conclusion, our results demonstrate that TXNIP binding to NLRP3 is a key signaling mechanism necessary for hHcys-induced NLRP3 inflammasome formation and activation and subsequent glomerular injury.  相似文献   

14.
BackgroundIdiopathic membranous nephropathy (MN) is an autoimmune-mediated glomerulonephritis and a common cause of nephrotic syndrome in adults. There are limited available treatments for MN. We assessed the efficacy of resveratrol (RSV) therapy for treatment of MN in a murine model of this disease.MethodsMurine MN was experimentally induced by daily subcutaneous administration of cationic bovine serum albumin, with phosphate-buffered saline used in control mice. MN mice were untreated or given RSV. Disease severity and pathogenesis was assessed by determination of metabolic and histopathology profiles, lymphocyte subsets, immunoglobulin production, oxidative stress, apoptosis, and production of heme oxygenase-1 (HO1).ResultsMN mice given RSV had significantly reduced proteinuria and a marked amelioration of glomerular lesions. RSV also significantly attenuated immunofluorescent staining of C3, although there were no changes of serum immunoglobulin levels or immunocomplex deposition in the kidneys. RSV treatment of MN mice also reduced the production of reactive oxygen species (ROS), reduced cell apoptosis, and upregulated heme oxygenase 1 (HO1). Inhibition of HO1 with tin protoporphyrin IX partially reversed the renoprotective effects of RSV. The HO1 induced by RSV maybe via Nrf2 signaling.ConclusionOur results show that RSV increased the expression of HO1 and ameliorated the effects of membranous nephropathy in a mouse model due to its anti-complement, anti-oxidative, and anti-apoptotic effects. RSV appears to have potential as a treatment for MN.  相似文献   

15.
Reactive oxygen species in vascular biology: implications in hypertension   总被引:24,自引:1,他引:24  
Reactive oxygen species (ROS), including superoxide (·O2), hydrogen peroxide (H2O2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO), are biologically important O2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) produce ROS, primarily via cell membrane-associated NAD(P)H oxidase. Reactive oxygen species regulate vascular function by modulating cell growth, apoptosis/anoikis, migration, inflammation, secretion, and extracellular matrix protein production. An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in oxidative stress. Oxidative stress and associated oxidative damage are mediators of vascular injury and inflammation in many cardiovascular diseases, including hypertension, hyperlipidemia, and diabetes. Increased generation of ROS has been demonstrated in experimental and human hypertension. Anti-oxidants and agents that interrupt NAD(P)H oxidase-driven ·O2 production regress vascular remodeling, improve endothelial function, reduce inflammation, and decrease blood pressure in hypertensive models. This experimental evidence has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates, by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. The present chapter focuses on the importance of ROS in vascular biology and discusses the role of oxidative stress in vascular damage in hypertension.  相似文献   

16.
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains, leading to structural modifications that loosen the extracellular matrix barrier and associated with tumor metastasis, inflammation and angiogenesis. In addition, the highly sulfated heparan sulfate proteoglycans are important constituents of the glomerular basement membrane and its permselective properties. Recent studies suggest a role for heparanase in several experimental and human glomerular diseases associated with proteinuria such as diabetes, minimal change disease, and membranous nephropathy. Here, we quantified blood and urine heparanase levels in renal transplant recipients and patients with chronic kidney disease (CKD), and assessed whether alterations in heparanase levels correlate with proteinuria and renal function. We report that in transplanted patients, urinary heparanase was markedly elevated, inversely associated with estimated glomerular filtration rate (eGFR), suggesting a relationship between heparanase and graft function. In CKD patients, urinary heparanase was markedly elevated and associated with proteinuria, but not with eGFR. In addition, urinary heparanase correlated significantly with plasma heparanase in transplanted patients. Such a systemic spread of heparanase may lead to damage of cells and tissues alongside the kidney.The newly described association between heparanase, proteinuria and decreased renal function is expected to pave the way for new therapeutic options aimed at attenuating chronic renal allograft nephropathy, leading to improved graft survival and patient outcome.  相似文献   

17.
18.
Diabetic nephropathy is a common cause for end-stage renal disease. Present study investigated the beneficial role of arjunolic acid (AA) against streptozotocin (STZ) induced diabetic nephropathy in rats. Diabetic renal injury was associated with increased kidney weight to body weight ratio, glomerular area and volume, blood glucose (hyperglycemia), urea nitrogen and serum creatinine. This nephro pathophysiology increased the productions of reactive oxygen species (ROS) and reactive nitrogen species (RNS), enhanced lipid peroxidation, protein carbonylation and decreased intracellular antioxidant defense in the kidney tissue. In addition, hyperglycemia activates polyol pathway by increasing aldose reductase (AR) with a concomitant reduction in Na+-K+-ATPase activity. Investigating the oxidative stress responsive signaling cascades, we found the activation of PKCδ, PKC?, MAPKs and NF-κB (p65) in the renal tissue of the diabetic animals. Furthermore, hyperglycemia disturbed the equilibrium between the pro and anti-apoptotic members of Bcl-2 family of proteins as well as reduced mitochondrial membrane potential, elevated the concentration of cytosolic cytochrome C and caspase-3 activity. Treatment of AA effectively ameliorated diabetic renal dysfunctions by reducing oxidative as well as nitrosative stress and deactivating the polyol pathways. Histological studies also support the experimental findings. Results suggest that AA might act as a beneficial agent against the renal dysfunctions developed in STZ-induced diabetes.  相似文献   

19.
We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.  相似文献   

20.
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号