首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

2.
If acetyl-CoA carboxylase in epididymal fat tissue is subject to control by convalent modification as in the case of the liver enzyme, catalytically different forms of carboxylase should exist, independent of polymerization. By treating epididymal fat tissue in culture with epinephrine, we have demonstrated catalytically less active forms of acetyl-CoA carboxylase. The catalytically less active forms of the enzyme reacted to antibody with the same efficiency as the active form of carboxylase. However, the less active enzyme formed by epinephrine treatment of tissues has a sedimentation constant of 30 to 35 S, whereas that of the enzyme from control tissue is 45 S. Incubation of the less active forms of the carboxylase with 10 mM citrate and up to 10 mg/ml of bovine serum albumin activated the enzyme without any change in the sedimentation constant. Therefore, the less active forms of the carboxylase formed as a result of epinephrine treatment are not due to the depolymerization of polymeric forms (45 S) to the protomeric forms (17 to 20 S), but to the formation of intermediate species of carboxylase which cannot form polymeric enzyme (45 S) in the presence of high concentrations of citrate.  相似文献   

3.
L-(+)-lactate dehydrogenase (LDH) from Staphylococcus epidermidis ATCC 14990 was purified by affinity chromatography. The purified enzyme was specifically activated by fructose-1,6-diphosphate (FDP). The concentration of FDP required for 50% maximal activity was about 0.15 mM. The enzyme activity was inhibited by adenosine diphosphate (ADP) and oxamate. The inhibition by ADP appeared to be competitive with respect to reduced nicotinamide adenine dinucleotide (NADH). The catalytic activity of the LDH for pyruvate reduction exhibited an optimum at pH 5.6. The enzyme is composed of four, probably identical, subunits. Sephadex gel filtration and sedimentation velocity at pH 5.6 Yielded molecular weights of about 130 000 and 126 000, respectively. The molecular weight at pH 6.5 and 7.0 was found to be only about 68 000. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate and sedimentation velocity at pH 2.0 or 8.5 revealed monomeric subunits with an approximate molecular weight of 36000. The thermostability of the heat labile enzyme was increased in the presence of FDP, NADH and pyruvate. The purified LDH exhibited an anomalous type of kinetic behavior. Plots of initial velocity vs. different concentrations of pyruvate, NADH or FDP led to saturation curves with intermediary plateau regions. As a consequence of these plateau regions the Hill coefficient alternated between lower and higher n-values. Some distinguishing properties of the S. epidermidis LDH and other LDHs activated by FDP are discussed.  相似文献   

4.
Phosphoenolpyruvate carboxylase from Pseudomonas MA, grown on methylamine as a sole carbon source, has been studied with respect to some of its regulatory properties. The enzyme shows both negative and positive cooperativity with respect to the substrate phosphoenolpyruvate (Hill coefficients of 0.5 and 1.75). The enzyme requires a divalent cation for activity. Either magnesium or manganous ion is effective. While magnesium shows normal kinetics, manganous ion shows positive cooperativity with a Hill coefficient of 1.4. The enzyme is activated 50-fold by 0.2 mM NADH at 1 mM phosphoenolpyruvate. This activation is hysteretic, showing a lag of 2 to 3 min. Both NADH and Mn2+ induce a change in the sedimentation coefficient of the enzyme from 12.4 to 8.5 as measured by sucrose density gradient centrifugation. High concentrations of phosphate or sulfate are capable of producing this effect on sedimentation, but neither will activate more than 3-fold. Thus, if NADH is an indicator of the total energy level of the cell, the enzyme appears to be susceptible to control by factors which reflect this total energy level. The importance of this control with respect to hypothetical pathways of carbon utilization in the organism is discussed.  相似文献   

5.
Glutamate dehydrogenase from pig kidney has been purified to homogeneity by means of affinity chromatography on matrix bound Cibacron Blue F3G-A and gel chromatography on Sepharose 6B. The enzyme exhibits allosteric properties with the substrates alpha-ketoglutarate, ammonium, and NADH, respectively. GTP is a strong inhibitor which strengthened the cooperative interactions between the ammonium binding sites. ADP as an activator relieves the inhibition by GTP. Like glutamate dehydrogenase from bovine liver, glutamate dehydrogenase from pig kidney shows the ability of self-association, too. The sedimentation coefficient increases from 13.5 S at 0.07 mg protein/ml to 19.4 S at 1.32 mg protein/ml. In the sodium dodecylsulphate gel electrophoresis the enzyme migrates as a single band with a molecular-weight at 51000.  相似文献   

6.
Acetyl-coenzyme-A carboxylase has been isolated in homogeneous form from Candida lipolytica. The homogeneity of the enzyme preparation is evidenced by analytical ultracentrifugation, dodecyl-sulfate-polyacrylamide gel electrophoresis and Ouchterlony double-diffusion analysis. The purified enzyme exhibits a specific activity of 8.0 U/mg protein at 25 degrees C and contains 1 mol biotin/263000 g protein. The sedimentation coefficient (S20,W) of the enzyme is 18 S. It has been shown by dodecyl-sulfate-polyacrylamide gel electrophoresis that the enzyme possesses only one kind of subunit with a molecular weight of 230000. This finding, together with the biotin content, indicates that the C. lipolytica enzyme has a highly integrated subunit structure. The C. lipolytica enzyme is very labile, but is stabilized by glycerol. The enzyme is markedly activated by poly(ethyleneglycol), the activation being due principally to a decrease in the Km values for substrates. Even in the presence of this activator, the Km value for acetyl-CoA of the C. lipolytica enzyme is much higher than that of the enzyme from Saccharomyces cerevisiae and animal tissues. The C. lipolytica enzyme, unlike the enzyme from animal tissues, is not activated by citrate.  相似文献   

7.
Bovine liver glutamate dehydrogenase reacts covalently with the adenine nucleotide analogue 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of about 1 mol of reagent/mol of enzyme subunit. The modified enzyme is not inactivated by this reaction as measured in the absence of allosteric effectors. Native glutamate dehydrogenase is activated by ADP and inhibited by high concentrations of NADH; both of these effects are irreversibly decreased upon reaction of the enzyme with 2-BDB-TAMP. The decrease in activation by ADP was used to determine the rate constant for reaction with 2-BDB-TAMP. The rate constant (kobs) for loss of ADP activation exhibits a nonlinear dependence on 2-BDB-TAMP concentration, suggesting a reversible binding of reagent (KR = 0.74 mM) prior to irreversible modification. At 1.2 mM 2-BDB-TAMP, kobs = 0.060 min-1 and is not affected by alpha-ketoglutarate or GTP, but is decreased to 0.020 min-1 by 5 mM NADH and to zero by 5 mM ADP. Incorporation after incubation with 1.2 mM 2-BDB-TAMP for 1 h at pH 7.1 is 1.02 mol/mol enzyme subunit in the absence but only 0.09 mol/subunit in the presence of ADP. The enzyme protected with 5 mM ADP behaves like native enzyme in its activation by ADP and in its inhibition by NADH. Native enzyme binds reversibly 2 mol of [14C]ADP/subunit, whereas modified enzyme binds only 1 mol of ADP/peptide chain. These results indicate that incorporation of 1 mol of 2-BDB-TAMP causes elimination of one of the ADP sites of the native enzyme. 2-BDB-TAMP acts as an affinity label of an ADP site of glutamate dehydrogenase and indirectly influences the NADH inhibitory site.  相似文献   

8.
V B Lawlis  T E Roche 《Biochemistry》1981,20(9):2519-2524
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.  相似文献   

9.
The activity of alpha-ketoglutarate dehydrogenase complex from pigeon breast muscle is controlled by ADP and the reaction products, i. e. succinyl-CoA and NADH. ADP activates the alpha-ketoglutarate dehydrogenase component of the complex, whereas NADH inhibits alpha-ketoglutarate dehydrogenase and lipoyl dehydrogenase. In the presence of NADH the kinetic curve of the complex with respect to alpha-ketoglutarate and NAD and the dependence of upsilon versus [NAD] and upsilon versus [Lip (SH)2] in the lipoyl dehydrogenase reaction are S-shaped. In the absence of inhibitor ADP had no activating effect on lipoyl dehydrogenase; however, in the presence of NADH ADP decreases the cooperativity for NAD. The cooperative kinetics of the constituent enzymes of the complex are indicative of its allosteric properties. Isolation of the alpha-ketoglutarate dehydrogenase complex and its lipoyl dehydrogenase and alpha-ketoglutarate dehydrogenase components in a desensitized state confirms their allosteric nature. It is assumed that NADH effects of isolated alpha-ketoglutarate dehydrogenase is due to a shift in the equilibrium between different oligomeric forms of the enzyme.  相似文献   

10.
Reaction of ox liver glutamate dehydrogenase with 1-fluoro-2,4-dinitrobenzene for 4 h at pH 8 caused 86% inactivation, almost complete desensitization to allosteric inhibition by GTP, but only partial desensitization to ADP activation. The enzyme remained hexameric after such treatment. NAD+, but not NADH or NADPH, partially protected activity. Protection was enhanced by GTP and decreased by ADP. GTP and NADH together protected effectively, although separately neither protected. GTP and NADPH gave partial protection of activity. Glutarate and succinate, inhibitors competitive with glutamate, gave substantial protection, slightly enhanced in the presence of NAD+. With glutarate, but not succinate, an initial activation was seen during chemical modification. The allosteric response to GTP was protected by GTP itself only when NAD+ or NAD(P)H was also present; other ligands failed to protect. Similarly ADP alone did not protect ADP sensitivity. NADH partially protected ADP sensitivity, although NADPH did not. ADP itself counteracted the protection given by NADH. GTP with NADH completely protected ADP sensitivity. This combination of ligands thus protects all the assayed properties. GTP with NADPH gave less complete protection of the ADP response. Observed protection patterns varied with the pH and coenzyme concentration of the assay mixture under constant conditions of chemical modification. Overall, the results are inconsistent with the view that dinitrophenylation directly blocks nucleotide binding sites, and suggest rather that it interferes with communication between sites.  相似文献   

11.
D H Ozturk  I Park  R F Colman 《Biochemistry》1992,31(43):10544-10555
A new guanosine nucleotide has been synthesized and characterized: guanosine 5'-O-[S-(3-bromo-2-oxopropyl)]thiophosphate (GMPSBOP), with a reactive functional group which can be placed at a position equivalent to the pyrophosphate region of GTP. This new analog is negatively charged at neutral pH and is similar in size to GTP. GMPSBOP has been shown to react with bovine liver glutamate dehydrogenase with an incorporation of 2 mol of reagent/mol of subunit. The modification reaction desensitizes the enzyme to inhibition by GTP, activation by ADP, and inhibition by high concentrations of NADH, but does not affect the catalytic activity of the enzyme. The rate constant for reaction of GMPSBOP with the enzyme exhibits a nonlinear dependence on reagent concentration with KD = 75 microM. The addition to the reaction mixture of alpha-ketoglutarate, GTP, ADP, or NADH alone results in little decrease in the rate constant, but the combined addition of 5 mM NADH with 0.4 mM GTP or with 10 mM alpha-ketoglutarate reduces the reaction rate approximately 6-fold. GMPSBOP modifies peptides containing Met-169 and Tyr-262, of which Tyr-262 is not critical for the decreased sensitivity of the enzyme toward allosteric ligands. The presence of 0.4 mM GTP plus 5 mM NADH protects the enzyme against reaction at both Met-169 and Tyr-262, but yields enzyme with 1 mol of reagent incorporated/mol of subunit which is modified at an alternate site, Met-469. In the presence of 0.2 mM GTP + 0.1 mM NADH, protection against modification of Tyr-262, but only partial protection against labeling of Met-169, is observed. In contrast, the presence of 10 mM alpha-ketoglutarate + 5 mM NADH protect only against reaction with Met-169. The results suggest that GMPSBOP reacts at the GTP-dependent NADH regulatory site [Lark, R. H., & Colman, R. F. (1986) J. Biol. Chem. 261, 10659-10666] of bovine liver glutamate dehydrogenase, which markedly affects the sensitivity of the enzyme to GTP inhibition. The reaction of GMPSBOP with Met-169 is primarily responsible for the altered allosteric properties of the enzyme.  相似文献   

12.
Inorganic phosphate, a strong activator of glutamate dehydrogenase at pH 8.0–9.0, is an inhibitor at pH 6.0–7.6. The extent of inhibition increases with the decrease of pH. The same effect is shown by other electrolytes, including Tris-hydroxymethyl-aminomethane and NaCl.The combined effect of pH and ionic strength also alters the allosteric characteristics of the enzyme. Lowering the pH minimizes the activation by high concentrations of NAD; phosphate partially restores this activation. The allosteric activation by ADP disappears at pH around neutrality; in the pH range 6.0–7.0, ADP becomes a strong inhibitor, the inhibition being enhanced by the addition of ionic compounds. Similarly, the extent of allosteric inhibition by guanosine 5′-triphosphate (pyro) (GTP), which is maximal at pH 9.0, decreases at lower pH values and a slight activation is observed in the presence of electrolytes at pH 6.0.Glutamate dehydrogenase, selectively desensitized by dinitrophenylation in the presence of ADP, can be activated by ADP at pH 9.0, but is no longer inhibited by the same effector at pH 6.0, high salt concentration. The densensitized enzyme is not inhibited by GTP at pH 9.0, but is activated by this effector at pH 6.0 in the presence of ionic compounds. Conversely, GTP-protected dinitrophenylated glutamate dehydrogenase is desensitized only to the effect of the activating modifier, ADP at pH 9.0, GTP at pH 6.0, high salt concentration. These findings suggest that the conformation of each allosteric site of glutamate dehydrogenase is changed by pH and ionic strength so that it keeps its specificity for the ligand which brings about a given effect, activation or inhibition, independently from its chemical structure.  相似文献   

13.
The effects of NaCl on the kinetic properties of desalted phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.31) from two halophytes, Suaeda monoica Forssk. ex. J.F. Gmel and Chloris gayana Kunth. were investigated. The tolerance of PEP carboxylase to NaCl in the reaction medium depends on the enzyme pre-conditioning as well as on the concentration of its substrate PEP in the assay medium. Addition of PEP to the extraction and the storage medium, stabilizes the enzyme. Such a pre-treated enzyme is inhibited by NaCl in the presence of low concentrations of PEP in the assay medium but is activated by NaCl in the presence of PEP at concentrations above 1.0 m M . NaCl modifies the nH value, K' and Vmax, and seems to act as an allosteric effector.  相似文献   

14.
The biosynthesis of the enzyme pyruvate kinase (E.C. 2.7.1.40) of Alcaligenes eutrophus (Hydrogenomonas eutropha) H 16 was influenced by the carbon and energy source. After growth on gluconate the specific enzyme activity was high while acetate grown cells exhibited lower activities (340 and 55 mumoles/min-g protein, respectively). The pyruvate kinase from autotrophically grown cells was purified 110-fold. The enzyme was characterized by homotropic cooperative interactions with the substrate phosphoenolpyruvate, the activators AMP, ribose 5-phosphate, glucose-6-phosphate and the inhibitor ortho-phosphate. In addition to phosphate ATP caused inhibition but in this case nonsigmoidal kinetics was obtained. The half maximal substrate saturation constant S0.5 for phosphoenolpyruvate in the absence of any effectors was 0.12 mM, in the presence of 1 mM ribose-5-phosphate 0.07 mM, and with 9 mM phosphate 0.67 mM. The corresponding Hill values were 0.96, 1.1 and 2.75. The ADP saturation curve was hyperbolic even in the presence of the effectors, the Km value was 0.14 mM ADP. When the known intracellular metabolite concentrations in A. eutrophus H 16 were compared with the regulatory sensitivity of the enzyme, it appeared that under the conditions in vivo the inhibition by ATP was more important than the regulation by the allosteric effectors.  相似文献   

15.
dCMP aminohydrolase, which is an allosteric enzyme, was reacted with glutaraldehyde in the presence of the allosteric activator deoxycytidine-5′-triphosphate and of the competitive inhibitor deoxyadenosine-5′-monophosphate. The isolated modified enzyme is no longer sensitive to the effect of the allosteric ligands and shows kinetics typical of the activated enzyme. Gel electrophoresis demonstrated that glutaraldehyde, under our experimental conditions, does not produce intermolecular cross-links but fixes 80% of the enzyme in a stable hexameric form by intramolecular cross-links.The kinetic and molecular data are explained assuming that glutaraldehyde freezes the enzyme in the activated conformation.  相似文献   

16.
Pigeon liver pyruvate carboxylase (pyruvate: CO2 ligase (ADP forming), EC 6.4.1.1) shows allosteric properties similar to those of chicken or rat liver enzyme. Kinetic methods have been used to determine the effect of Ca2+ on this enzyme. The Ca2+ activation effect is absolutely dependent on the Mg2+ concentration; in the absence of Mg2+, pyruvate carboxylase has no catalytic activity. Furthermore, Ca2+ cannot replace Mg2+ and also shows a paradoxical effect on the liver enzyme activity. It is an activator at low pyruvate or Mg2+ concentrations; at increased pyruvate concentrations, however, it becomes an inhibitor. At low levels of ATP a pronounced activation of pigeon liver pyruvate carboxylase by Ca2+ has been demonstrated. The results of this communication demonstrate pigeon liver pyruvate carboxylase to be different from pyruvate carboxylase from other sources.  相似文献   

17.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

18.
R S Ehrlich  R F Colman 《Biochemistry》1990,29(21):5179-5187
NAD(+)-dependent isocitrate dehydrogenase from pig heart is an allosteric enzyme that is activated by ADP and is inhibited by NADPH in the presence of NADH. Transferred nuclear Overhauser effect measurements, made at a range of times to ensure that observed effects are due to direct dipole-dipole transfer and not to spin diffusion, were used to determine the conformations of pyridine nucleotide coenzymes and of the allosteric effector ADP. For NAD+, significant effects were observed on the N2 proton (on the nicotinamide ring) when the N1' proton (on the nicotinamide ribose) was saturated and on the N6 proton when the N2' proton was saturated, indicating that the conformation of the nicotinamide-ribose moiety is anti. The anti conformation is expected because of the stereospecificity of NAD(+)-dependent isocitrate dehydrogenase and is the same as for NADP(+)-dependent isocitrate dehydrogenase. For the adenosine moiety of NAD+, the predominant nuclear Overhauser effect on the A8 proton is found when the A2' proton is saturated. This result implies that the adenine-ribose bond is anti with respect to the ribose. Previous kinetic and binding studies of ADP activation have shown an influence of divalent metal ions. The conformation of bound ADP, in the presence of Mg2+ and/or Ca2+, is found to be anti about the adenine-ribose bond. The 3'H-8H distance increases when Ca2+ is added to the Mg-ADP-enzyme complex. Changes in the 4'H-1'H distance upon addition of isocitrate are indicative of interactions between the ADP activator site and the isocitrate site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The bound nucleotides of the beef-heart mitochondrial ATPase (F1) are lost during cold inactivation followed by (NH4)2SO4 precipitation. The release of tightly bound ATP parallels the loss of ATPase activity during this process. 2. During cold inactivation, the sedimentation coefficient (s20, w) of the ATPase first declines from 12.1 S to 9 S, then to 3.5 S. (NH4)2SO4 precipitation of the 9-S component also leads to dissociation into subunits with s20, w of 3.5 S. 3. The 9-S component still contains the bound nucleotides, which are removed when it dissociated into smaller subunits. 4. Reactivation of cold-inactivated ATPase by incubation at 30 degrees C is increased by the presence of 25% glycerol. ATP, however, does not have any clearcut effect on the degree of reactivation in the presence of glycerol. 5. ADP is an inhibitor of the reactivation, probably because it exchanges during reactivation for bound ATP giving rise to an inactive 12-S component. 6. The exchange of tightly bound nucleotides with added adenine nucleotides is more extensive and faster with cold-inactivated ATPase than with the native enzyme. During reactivation up to 1.6 moles of ATP and 1.0 mole ADP can exchange per mole enzyme. 7. Incubation with GTP, CTP or inorganic pyrophosphate induces an increased activity of the ATPase, which, however, soon declines in the presence of ATP. It also disappears on precipitation of GTP-treated enzyme with (NH4)2SO4.  相似文献   

20.
Mammalian NAD-dependent isocitrate dehydrogenase is an allosteric enzyme, activated by ADP and composed of 3 distinct subunits in the ratio 2alpha:1beta:1gamma. Based on the crystal structure of NADP-dependent isocitrate dehydrogenases from Escherichia coli, Bacillus subtilis, and pig heart, and a comparison of their amino acid sequences, alpha-Arg88, beta-Arg99, and gamma-Arg97 of human NAD-dependent isocitrate dehydrogenase were chosen as candidates for mutagenesis to test their roles in catalytic activity and ADP activation. A plasmid harboring cDNA that encodes alpha, beta, and gamma subunits of the human isocitrate dehydrogenase (Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J., and Huh, T. L. (1999) J. Biol. Chem. 274, 36866-36875) was used to express the enzyme in isocitrate dehydrogenase-deficient E. coli. Wild type (WT) and mutant enzymes (each containing 2 normal subunits plus a mutant subunit with alpha-R88Q, beta-R99Q, or gamma-R97Q) were purified to homogeneity yielding enzymes with 2alpha:1beta:1gamma subunit composition and a native molecular mass of 315 kDa. Specific activities of 22, 14, and 2 micromol of NADH/min/mg were measured, respectively, for WT, beta-R99Q, and gamma-R97Q enzymes. In contrast, mutant enzymes with normal beta and gamma subunits and alpha-R88Q mutant subunit has no detectable activity, demonstrating that, although beta-Arg99 and gamma-Arg97 contribute to activity, alpha-Arg88 is essential for catalysis. For WT enzyme, the Km for isocitrate is 2.2 mm, decreasing to 0.3 mm with added ADP. In contrast, for beta-R99Q and gamma-R97Q enzymes, the Km for isocitrate is the same in the absence or presence of ADP, although all the enzymes bind ADP. These results suggest that beta-Arg99 and gamma-Arg97 are needed for normal ADP activation. In addition, the gamma-R97Q enzyme has a Km for NAD 10 times that of WT enzyme. This study indicates that a normal alpha subunit is required for catalytic activity and alpha-Arg88 likely participates in the isocitrate site, whereas the beta and gamma subunits have roles in the nucleotide functions of this allosteric enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号