首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

2.
Stromelysin-1 is a member of a tissue metalloproteinase family whose members are all capable of degrading extracellular matrix components. A truncated form of human fibroblast prostromelysin 1 lacking the C-terminal, hemopexin-like domain has been expressed in Escherichia coli and purified to homogeneity. Treatment of this short form of prostromelysin with (aminophenyl)mercuric acetate resulted in activation and loss of the propeptide in a manner identical with the wild-type, full-length protein. Kinetic comparisons using Nle11-substance P as a substrate showed that the wild-type stromelysin and the truncated form of the enzyme had similar kcat and Km values. Likewise, both enzymes displayed similar Ki values for a hydroxamate-containing peptide inhibitor. Taken together, these results indicate that the C-terminal portion of stromelysin is not required for proper folding of the catalytic domain, maintenance of the enzyme in a latent form, activation with an organomercurial, cleavage of a peptide substrate, or interaction with an inhibitor. Moreover, the active short form of stromelysin displayed a reduction in the C-terminal heterogeneity, a characteristic degradation of the full-length stromelysin, and thereby provides a more suitable protein for future structural studies.  相似文献   

3.
Organomercurial agarose has been used in the purification of various thiol compounds including enzymes (1). Thiol compounds are first adsorbed on a column of organomercurial agarose, and then eluted with a second thiol compound, e.g., 2-mercaptoethanol (2-ME)1 and cysteine. Although this column can be used repeatedly, a usual method for regeneration of the column is to remove the second thiol by HgCl2. It would be desirable to regenerate the column without using HgCl2, since it is biohazardous. In the study of the purification of a thiol-containing enzyme, we found that organomercurial agarose, which had previously been treated with 2-ME, could adsorb the enzyme and that the enzyme was eluted with 2-ME. This finding led us to examine whether the column can be used repeatedly without the regeneration using HgCl2.  相似文献   

4.
The alanine racemase (EC 5.1.1.1) gene of a thermophilic bacterium, Bacillus stearothermophilus, was cloned and expressed in Escherichia coli C600 with vector plasmid pICR301, which was constructed from pBR322 and the L-alanine dehydrogenase gene derived from B. stearothermophilus. A coupled assay method with L-alanine dehydrogenase and tetrazolium salts was used to detect visually the alanine racemase activity in the clones. Alanine racemase overproduced in a clone carrying the plasmid pICR4, 12 kilobases of DNA, was purified from cell extracts about 340-fold to homogeneity by five steps including heat treatment. The overproduced enzyme was confirmed to originate from B. stearothermophilus by an immunochemical cross-reaction with the enzyme of B. stearothermophilus. The purified enzyme has a molecular weight of about 78 000 and consists of two identical subunits of Mr of 39 000. At the optimum temperature (50 degrees C), the enzyme has a specific activity of 1800 units/mg (Vmax, D- to L-alanine). Resolution and reconstitution experiments together with the absorption spectrum of the enzyme clearly indicate that alanine racemase of B. stearothermophilus is a pyridoxal 5'-phosphate enzyme.  相似文献   

5.
Two separate enzymes, which determine resistance to inorganic mercury and organomercurials, have been purified from the plasmid-bearing Escherichia coli strain J53-1(R831). The mercuric reductase that reduces Hg2+ to volatile Hg0 was purified about 240-fold from the 160,000 X g supernatant of French press disrupted cells. This enzyme contains bound FAD, requires NADPH as an electron donor, and requires the presence of a sulfhydryl compound for activity. The reductase has a Km of 13 micron HgCl2, a pH optimum of 7.5 in 50 mM sodium phosphate buffer, an isoelectric point of 5.3, a Stokes radius of 50 A, and a molecular weight of about 180,000. The subunit molecular weight, determined by gel electrophoresis in the presence of sodium dodecyl sulfate, is about 63,000 +/- 2,000. These results suggest that the native enzyme is composed of three identical subunits. The organomercurial hydrolase, which breaks the mercury-carbon bond in compounds such as methylmercuric chloride, phenylmercuric acetate, and ethylmercuric chloride, was purified about 38-fold over the starting material. This enzyme has a Km of 0.56 micron for ethylmercuric chloride, a Km of 7.7 micron for methylmercuric chloride, and two Km values of 0.24 micron and over 200 micron for phenylmercuric acetate. The hydrolase has an isoelectric point of 5.5, requires the presence of EDTA and a sulfhydryl compound for activity, has a Stokes radius of 24 A, and has a molecular weight of about 43,000 +/- 4,000.  相似文献   

6.
Thrombin is a Na(+)-activated enzyme.   总被引:7,自引:0,他引:7  
C M Wells  E Di Cera 《Biochemistry》1992,31(47):11721-11730
The amidase activity of human alpha-thrombin has been studied at steady state as a function of the concentration of several chloride salts, at a constant ionic strength I = 0.2 M. All kinetic steps of the catalytic mechanism of the enzyme have been solved by studies conducted as a function of relative viscosity of the solution. Among all monovalent cations, Na+ is the most effective in activating thrombin catalysis. This effect is observed with different amide substrates and also with gamma-thrombin, a proteolytic derivative of the native enzyme which has little clotting activity but retains amidase activity toward small synthetic substrates. The specific effects observed as a function of Na+ concentration are indicative of a binding interaction of this monovalent cation with the enzyme. The basis of this interaction has been explored by measurements of substrate hydrolysis collected in a three-dimensional matrix of substrate concentration, relative viscosity, and Na+ concentration, keeping the ionic strength constant with an inert cation such as choline or tetraethylammonium. The data have globally been analyzed in terms of a kinetic linkage scheme where Na+ plays the role of an allosteric effector. The properties of the enzyme change drastically upon binding of Na+, with substrate binding and dissociation, as well as deacylation, occurring on a time scale which is 1 order of magnitude faster. The apparent association constants for Na+ binding to the various intermediate forms of the enzyme have all been resolved from analysis of experimental data and are in the range of 50-100 M-1 at 25 degrees C. Studies conducted at different temperatures, in the range 15-35 degrees C, have revealed the enthalpic and entropic components of Na+ binding to the enzyme. The results obtained from steady-state measurements are supported by independent measurements of the intrinsic fluorescence of the enzyme as a function of Na+ concentration at a constant ionic strength I = 0.2 M, over the temperature range 15-35 degrees C. These measurements are indicative of a drastic conformational change of the enzyme upon Na+ binding to a single site. The energetics of Na+ binding derived from analysis of fluorescence measurements agree very well with those derived independently from steady-state determinations. It is proposed that thrombin exists in two conformations, slow and fast, and that the slow-->fast transition is triggered by binding of a monovalent cation. The high specificity in thrombin activation found in the case of Na+ is the result of its higher affinity compared to all other monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We cloned, expressed and characterized a novel alpha/beta-galactoside alpha2,3-sialyltransferase from Vibrio sp. bacterium JT-FAJ-16. Using a alpha2,3-sialyltransferase gene from a marine bacterium as a probe, a DNA sequence encoding a 402-amino-acid protein was identified from the JT-FAJ-16 genomic library. The protein showed 27.3-64.7% identity to the bacterial sialyltransferases classified into glycosyltransferase family 80. The protein showed sialyltransferase activity when expressed in Escherichia coli. The N-terminal truncated form of the enzyme was amplified in E. coli and its recovered activity was 215.7 unit/l culture medium. It was purified as a single band on SDS-PAGE through the three chromatographic steps. The specific activity of the purified recombinant enzyme reached 57.5 unit/mg protein. The alpha2,3sialylation was confirmed by (1)H- and (13)C-NMR analyses of the reaction products. The enzyme was optimally active at pH 5.5 and at 20 degrees C. Interestingly, the enzyme used both the alpha- and beta-anomers of galactosides as acceptors, suggesting that it can be described as an alpha/beta-galactoside alpha2,3-sialyltransferase. The enzyme had a wide range of acceptor substrate specificities. It transferred N-acetylneuraminic acid (NeuAc) to various monosaccharides and various oligosaccharides, and both N-linked and O-linked asialo-glycoprotein. These results suggest that the enzyme can be used as a powerful tool for the study for glycotechnology.  相似文献   

8.
The serine protease inhibitor chymotrypsin inhibitor 2 (CI2 or BSPI2) has been expressed in Escherichia coli with the pINIIIompA3 expression vector to produce 20-40 mg/L of culture. Recombinant CI2 purified from this system has been characterized and found to be identical with CI2 from barley. Slow-binding kinetics were observed for the interaction between CI2 and subtilisin BPN', with Ki = 2.9 x 10(-12) M. Analysis of slow-binding data indicates that binding of the inhibitor follows the simplest model of E + I = EI with no kinetically detectable intermediate steps or proteolytic cleavage of the reactive site bond in CI2 (Met-59-Glu-60). This, in agreement with crystallographic data, indicates that the enzyme-inhibitor adduct is the Michaelis complex, which is not chemically processed by the enzyme. Three mutant CI2 molecules with new P1 residues have also been examined with a range of serine proteases, including a mutant subtilisin. In agreement with earlier studies, we find the P1 amino acid an important determinant of specificity. CI2 Met----Lys-59 was found to be a temporary inhibitor of subtilisin BPN' but an effective inhibitor of subtilisin Carlsberg and subtilisin BPN'(Glu----Ser-156). The structural reasons for this are discussed in relation to mechanisms of inhibition of serine proteases.  相似文献   

9.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

10.
A catalase gene, ohktA, from an alkali- and halo-tolerant bacterium, Halomonas sp. SK1, on the pKK223-3, was expressed in the catalase-lacking Escherichia coli strain UM2. Highly purified catalase showing a single band on SDS-PAGE was obtained by two liquid chromatography steps on DEAE-Toyopear1 and Chelating-Sepharose Fast Flow. The enzyme, oHktA, shows high catalase activity with a pH optimum at 10, and the activity was stable in 4 M KC1. This enzyme is thermo-sensitive, showing a significant loss of activity within 5 minutes at 37 degrees C. To modify the stability of the catalase, the addition of domain II of the heat stable Mn catalase from Thermus thermophilus to the C-terminus was made. When coexpressed with a chaperone (PhFKBP29) gene product, peptidyl-prolyl cis-trans isomerase, from a thermophilic bacterium, a chimeric catalase was produced in the soluble fraction. The stability of this catalase in the range of 37 degrees -45 degrees C was improved and it was stable for more than 1 h at 37 degrees C.  相似文献   

11.
Uridylyltransferase, a component of the covalent modification cascade system that controls glutamine synthetase activity in Escherichia coli, has been purified to apparent homogeneity. The purification was facilitated by the use of an E. coli strain which carries multiple copies of a ColE1-hybrid plasmid containing the glnD gene that encodes uridylyltransferase and which overproduces its synthesis by 25-fold. Gel electrophoresis and high pressure liquid chromatography studies show that the native enzyme is a single polypeptide chain of Mr = 95,000 +/- 5,000. The purified enzyme catalyzes the uridylylation as well as the deuridylylation of the regulatory protein PII, demonstrating that a single bifunctional enzyme is involved in the covalent interconversion of PII. Gel filtration studies indicate that the enzyme undergoes slow irreversible aggregation during most steps of purification with a concomitant loss of activity.  相似文献   

12.
The Thermotoga maritima aldolase gene has been cloned into a T7 expression vector and overexpressed in Escherichia coli. The preparation yields 470 UL(-1) of enzyme at a specific activity of 9.4 U mg(-1). During retroaldol cleavage of KDPG, the enzyme shows a k(cat) that decreases with decreasing temperature. A more than offsetting decrease in K(m) yields an enzyme that is more efficient at 40 degrees C than at 70 degrees C. The substrate specificity of the enzyme was evaluated in the synthetic direction with a range of aldehyde substrates. Although the protein shows considerable structural homology to KDPG aldolases from mesophilic sources, significant differences in substrate specificity exist. A preparative scale reaction between 2-pyridine carboxaldehyde and pyruvate provided product of the same absolute configuration as mesophilic enzymes, but with diminished stereoselectivity.  相似文献   

13.
Neutral ceramidase activity has previously been identified in the intestinal mucosa and gut lumen and postulated to be important in the digestion of sphingolipids. It is found throughout the intestine but has never been fully characterized. We have purified rat intestinal neutral ceramidase from an eluate obtained by perfusing the intestinal lumen with 0.9% NaCl and 3 mM sodium taurodeoxycholate. Using a combination of acetone precipitation and ion-exchange, hydrophobic-interaction, and gel chromatographies, we obtained a homogenous enzyme protein with a molecular mass of approximately 116 kDa. The enzyme acts on both [14)]octanoyl- and [14C]palmitoyl-sphingosine in the presence of glycocholic and taurocholic acid and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate but is inhibited by 2 mM or more of other bile salts. It is a glycosylated protein stable to trypsin and chymotrypsin exposure, is not influenced by Ca2+, Mg2+, or Mn2+, and is inhibited by Zn2+ and Cu2+. Mass fragmentographic analysis identified 12 fragments covering 17.5% of the sequence for neutral/alkaline ceramidase 2 purified (Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T, and Ito M. J Biol Chem 276: 26249-262459, 2001) from rat kidney and located in apical membrane of renal tubular cells. Intestinal and kidney ceramidases also have similar molecular mass and ion dependence. Intestinal ceramidase thus is a neutral ceramidase 2 released by bile salts and resistant to pancreatic proteases. It is well suited to metabolize ceramide formed from dietary and brush border sphingolipids to generate other bioactive sphingolipid messengers.  相似文献   

14.
A new type of aza-analogues of (E)-4-[2-(1-naphthylvinyl)]-1-substituted pyridinium salts (NVP+) has been designed in order to study their in vitro inhibitory activity towards ChAT. A theoretical analysis has been performed and several examples of (E)-1-alkylazolylvinylpyridinium salts have been synthesized. Among them, the indolylvinylpyridinium salt is the only one showing some ChAT inhibition.

A new type of aza-analogues NVP+ 5 have been investigated. The evaluation of the ChAT inhibition together with the results of the semiempirical calculations suggest that coplanarity and polarization criteria may not be enough to account for ChAT activity of vinylpyridinium salts and that steric requirements might play a very important role in their interaction with the enzyme.  相似文献   


15.
The Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1 contains two distinct glutamate dehydrogenases (GDH), each specific for either NADP+ or NAD+. This feature is quite unusual in bacteria, which generally have a single GDH. NADP+-dependent GDH has been purified to homogeneity and the gene encoding GDH has been cloned and expressed. The enzyme has a hexameric structure. The amino acid sequence determined by peptide and gene analyses comprises 447 residues, yielding a protein with a molecular mass of 49 285 Da. The sequence shows homology with hexameric GDHs, with identity levels of 52% and 49% with Escherichia coli and Clostridium symbiosum GDH, respectively. The coenzyme-binding fingerprint motif GXGXXG/A (common to all GDHs) has Ser at the last position in this enzyme. The overall hydrophilic character is increased and a five-residue insertion in a loop between two alpha-helices may contribute to the increase in protein flexibility. Psychrobacter sp. TAD1 GDH apparent temperature optimum is shifted towards low temperatures, whereas irreversible heat inactivation occurs at temperatures similar to those of E. coli GDH. The catalytic efficiency in the temperature range 10-30 degrees C is similar or lower than that of E. coli GDH. Unlike E. coli GDH the enzyme exhibits marked positive cooperativity towards 2-oxoglutarate and NADPH. This feature is generally absent in prokaryotic GDHs. These observations suggest a regulatory role for this GDH, the most crucial feature being the structural/functional properties required for fine regulation of activity, rather than the high catalytic efficiency and thermolability encountered in several cold-active enzymes.  相似文献   

16.
Pure human skin fibroblast procollagenase has been utilized in this study as a model system in which to examine the pathways of organomercurial and trypsin activation. Three organomercurials, p-(hydroxymercuri) benzoate, mersalyl, and p-aminophenylmercuric acetate, were able to fully activate human skin procollagenase with no accompanying loss of molecular weight. Lower molecular weight species were subsequently produced, particularly with a fourth organomercurial, phenylmercuric chloride. The activation process was dependent upon the concentration of the organomercurial compound and the time of incubation, but not on enzyme protein concentration. No evidence of a role for free sulfhydryls was found. Trypsin produced an initial cleavage product of procollagenase which was collagenolytically inactive yet underwent a concentration independent autocatalysis. Thus, procollagenase appeared to have an autocatalytic property which was enhanced by treatment with a variety of agents, all of which may function by perturbation of the zymogen conformation.  相似文献   

17.
Chorismate synthase (EC 4.6.1.4) is the shikimate pathway enzyme that catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate. The enzyme reaction is unusual because it involves a trans-1,4 elimination of the C-3 phosphate and the C-6 proR hydrogen and it has an absolute requirement for reduced flavin. Several mechanisms have been proposed to account for the cofactor requirement and stereochemistry of the reaction, including a radical mechanism. This paper describes the synthesis of [4-(2)H]EPSP and the observation of kinetic isotope effects using this substrate with both Neurospora crassa and Escherichia coli chorismate synthases. The magnitude of the effects were (D)(V) = 1.08 +/- 0.01 for the N. crassa enzyme and 1.10 +/- 0.02 on phosphate release under single-turnover conditions for the E. coli enzyme. The effects are best rationalised as substantial secondary beta isotope effects. It is most likely that the C(3)-O bond is cleaved first in a nonconcerted E1 or radical reaction mechanism. Although this study alone cannot rule out a concerted E2-type mechanism, the C(3)-O bond would have to be substantially more broken than the proR C(6)-H bond in a transition state of such a mechanism. Importantly, although the E. coli and N. crassa enzymes have different rate limiting steps, their catalytic mechanisms are most likely to be chemically identical. Copyright 2000 Academic Press.  相似文献   

18.
J Charlier  E Gerlo 《Biochemistry》1979,18(14):3171-3178
Arginyl-tRNA synthetase from Escherichia coli K12 has been purified more than 1000-fold with a recovery of 17%. The enzyme consists of a single polypeptide chain of about 60 000 molecular weight and has only one cysteine residue which is essential for enzymatic activity. Transfer ribonucleic acid completely protects the enzyme against inactivation by p-hydroxymercuriben zoate. The enzyme catalyzes the esterification of 5000 nmol of arginine to transfer ribonucleic acid in 1 min/mg of protein at 37 degrees C and pH 7.4. One mole of ATP is consumed for each mole of arginyl-tRNA formed. The sequence of substrate binding has been investigated by using initial velocity experiments and dead-end and product inhibition studies. The kinetic patterns are consistent with a random addition of substrates with all steps in rapid equilibrium except for the interconversion of the cental quaternary complexes. The dissociation constants of the different enzyme-substrate complexes and of the complexes with the dead-end inhibitors homoarginine and 8-azido-ATP have been calculated on this basis. Binding of ATP to the enzyme is influenced by tRNA and vice versa.  相似文献   

19.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

20.
Mercury and organomercurial resistance determined by genes on ten Pseudomonas aeruginosa plasmids and one Pseudomonas putida plasmid have been studied with regard to the range of substrates and the range of inducers. The plasmidless strains were sensitive to growth inhibition by Hg(2+) and did not volatilize Hg(0) from Hg(2+). A strain with plasmid RP1 (which does not confer resistance to Hg(2+)) similarly did not volatilize mercury. All 10 plasmids determine mercury resistance by way of an inducible enzyme system. Hg(2+) was reduced to Hg(0), which is insoluble in water and rapidly volatilizes from the growth medium. Plasmids pMG1, pMG2, R26, R933, R93-1, and pVS1 in P. aeruginosa and MER in P. putida conferred resistance to and the ability to volatilize mercury from Hg(2+), but strains with these plasmids were sensitive to and could not volatilize mercury from the organomercurials methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids, in addition, conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate. The other plasmids, FP2, R38, R3108, and pVS2, determined resistance to and decomposition of a range of organomercurials, including methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids also conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate by a mechanism not involving degradation. In all cases, organomercurial decomposition and mercury volatilization were induced by exposure to Hg(2+) or organomercurials. The plasmids differed in the relative efficacy of inducers. Hg(2+) resistance with strains that are organomercurial sensitive appeared to be induced preferentially by Hg(2+) and only poorly by organomercurials to which the cells are sensitive. However, the organomercurials p-hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate were strong gratuitous inducers but not substrates for the Hg(2+) volatilization system. With strains resistant to phenylmercury and thimerosal, these organomercurials were both inducers and substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号