首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perlecan/HSPG2 is a large, multi-domain, multifunctional heparan sulfate proteoglycan with a wide tissue distribution. With the exception of its unique domain I, each of perlecan's other four domains shares sequence similarity to other protein families including low density lipoprotein (LDL) receptor, laminin alpha chain, neural cell adhesion molecule (NCAM), immunoglobulin (Ig) superfamily members, and epidermal growth factor (EGF). Previous studies demonstrated that glycosaminoglycan-bearing perlecan domain I supports early chondrogenesis and growth factor delivery. Other sites in the core protein interact with other matrix molecules and support cell adhesion, although the peptide sequences involved remain unidentified. To identify novel functional motifs within perlecan, we used a bioinformatics approach to predict regions likely to be on the exterior of the folded protein. Unique hydrophilic sequences of about 18 amino acids were selected for testing in cell adhesion assays. A novel peptide sequence (TWSKVGGHLRPGIVQSG) from an immunoglobulin (Ig) repeat in domain IV supported rapid cell adhesion, spreading and focal adhesion kinase (FAK) activation when compared to other peptides, a randomly scrambled sequence of the domain IV peptide or a negative control protein. MG-63 human osteosarcoma cells, epithelial cells and multipotent C(3)H10T1/2 cells, but not bone marrow cells, rapidly, i.e., within 30 min, formed focal adhesions and assembled an actin cytoskeleton on domain IV peptide. Cell lines differentially adhered to the domain IV peptide, suggesting adhesion is receptor specific. Adhesion was divalent cation independent and heparin sensitive, a finding that may explain some previously poorly understood observations obtained with intact perlecan. Collectively, these studies demonstrate the feasibility of using bioinformatics-based strategies to identify novel functional motifs in matrix proteins such as perlecan.  相似文献   

2.
A purified opioid-binding protein has been characterized by cDNA cloning. The cDNA sequence predicts an extracellularly located glycoprotein of 345 amino acids. This protein does not possess a membrane-spanning domain but contains a C-terminal hydrophobic sequence characteristic of membrane attachment by a phosphatidylinositol linkage. It displays homology to the immunoglobulin protein superfamily, featuring three domains that resemble disulfide-bonded constant regions. More specifically, the protein is most homologous to a subfamily of proteins which includes the neural cell adhesion molecule (NCAM) and myelin-associated glycoprotein (MAG) and one subgroup of the tyrosine kinase growth factor receptors comprising the platelet-derived growth factor receptor (PDGF R), the colony-stimulating factor 1 receptor (CSF-1 R) and the c-kit protooncogene. These sequence homologies suggest that the protein could be involved in either cell recognition and adhesion, peptidergic ligand binding or both.  相似文献   

3.
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Ig domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescencein situhybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1–q31.2. This chromosomal locus has been previously identified as containing a tumor suppressor candidate gene commonly deleted in certain human cancer tissues.  相似文献   

4.
Summary During a search for novel coding sequences within the human MHC class I region (chromosome 6p21.3), we found an exon (named B30-2) coding for a 166-amino-acid peptide which is very similar to the C-terminal domain of several coding sequences: human 52-kD Sjögren's syndrome nuclear antigen A/Ro (SS-A/Ro) and ret finger protein (RFP), Xenopus nuclear factor 7 (XNF7), and bovine butyrophilin. The first three of these proteins share similarities over the whole length of the molecule whereas butyrophilin is similar in the C-terminal domain. The N-terminal domain of butyrophilin is similar to rat myelin/oligodendrocyte glycoprotein (MOG) and chicken B blood group system (B-G) protein. These domains are components of a new subfamily of the immunoglobulin superfamily (IgSF). Butyrophilin is thus a mosaic protein composed of the MOG/B-G Ig-like domain and the C-terminal domain of 52-kD SS-A/Ro, RFP, and XNF7 (1330-2-like domain). Moreover, in situ hybridization shows that RFP, butyrophilin, and MOG map to the human chromosome 6p2l.3-6p22 region and are thus close to the MHC class I genes. It is therefore possible that the butyrophilin gene is the product of an exon shuffling event which occurred between ancestors of the RFP and MOG genes. To our knowledge, this is the first example of the colocalization of a chimeric gene and its putative progenitors. Finally, regulatory protein T-lymphocyte 1 (Rpt-1) shares similarities with the N-terminal halves of RFP, 52-kD SS-A/Ro, and XNF7, but not with the B30-2-like domain. We show that the ancestral Rpt-l gene evolved by overprinting. Correspondence to: P. Pontarotti  相似文献   

5.
Neogenin was first identified in the chick embryo, and like a number of cell surface proteins of the immunoglobulin (Ig) superfamily, including N-CAM and L1 (generally called cell adhesion molecules or CAMs), it is expressed on growing nerve cells in the developing nervous system of vertebrate embryos. Neogenin is also expressed in other embryonic tissues, suggesting a more general role in developmental processes such as tissue growth regulation, cell–cell recognition, and cell migration. Neogenin, unlike the CAMs, is closely related to a unique tumor suppressor candidate molecule, deleted in colorectal carcinoma (DCC). Like DCC, the neogenin protein consists of four immunoglobulin-like (Ig-like) domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. We now report the cloning and sequencing of cDNA clones coding for the human neogenin protein. Human neogenin shares 87% identity with its chicken homolog, and like its chicken counterpart it is expressed in at least two different isoforms derived from alternative splicing in the intracellular domain. Northern blot analysis revealed two mRNA species of about 5 and 7 kb. The chromosomal location of the human neogenin gene (HGMW-approved symbol NEO1) was determined as 15q22.3–q23, using fluorescencein situhybridization. The gene therefore maps in the vicinity of a locus associated with Bardet–Biedl syndrome. The identification of human neogenin and its chromosomal location provides a basis for studying its involvement in genetic disorders or diseases.  相似文献   

6.
7.
A L Main  T S Harvey  M Baron  J Boyd  I D Campbell 《Cell》1992,71(4):671-678
The solution structure of the tenth type III module of fibronectin has been determined using nuclear magnetic resonance techniques. The molecule has a fold similar to that of immunoglobulin domains, with seven beta strands forming two antiparallel beta sheets, which pack against each other. Both beta sheets contribute conserved hydrophobic residues to a compact core. The topology is more similar to that of domain 2 of CD4, PapD, and the extracellular domain of the human growth hormone receptor than to that of immunoglobulin C domains. The module contains an Arg-Gly-Asp sequence known to be involved in cell adhesion. This tripeptide is solvent exposed and lies on a conformationally mobile loop between strands F and G, consistent with its cell adhesion function.  相似文献   

8.
9.
Most core components of the neurotransmitter release machinery have homologues in other types of intracellular membrane traffic, likely underlying a universal mechanism of intracellular membrane fusion. However, no clear similarity between Munc13s and protein families generally involved in membrane traffic has been reported, despite the essential nature of Munc13s for neurotransmitter release. This crucial function was ascribed to a minimal Munc13 region called the MUN domain, which likely participates in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex (SNARE) assembly and is also found in Ca2+-dependent activator protein for secretion. We have now used comparative sequence and structural analyses to study the structure and evolutionary origin of the MUN domain. We found weak yet significant sequence similarities between the MUN domain and a set of protein subunits from several related vesicle tethering complexes, such as Sec6 from the exocyst complex and Vps53 from the Golgi-associated retrograde protein complex. Such an evolutionary relationship allows structure prediction of the MUN domain and suggests functional similarities between MUN domain-containing proteins and multisubunit tethering complexes such as exocyst, conserved oligomeric Golgi complex, Golgi-associated retrograde protein complex, and Dsl1p. These findings further unify the mechanism of neurotransmitter release with those of other types of intracellular membrane traffic and, in turn, support a role for tethering complexes in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex assembly.  相似文献   

10.
The tumor necrosis factor (TNF) receptor associated factor (TRAF) class of intracellular signal transducers is responsible for mediating many of the activation events initiated by TNF receptor (TNFR) and Toll‐like/Interleukin‐1, ‐17, and ‐18 receptor (TIR) families. Investigation of the mechanism by which TRAF6 is activated has demonstrated that two critical domains of the molecule required for activation and downstream signaling are involved in an interaction which renders the molecule inactive and structurally closed, as well as incapable of auto‐ubiquitination. Contrary to its assumed role as a direct mediator of protein–protein interaction, TRAF auto‐ubiquitination is a means of sustaining an open conformation active in downstream signaling. Furthermore, the inferred cis‐function of TRAF auto‐ubiquitination is now demonstrated to act in trans and requires both the RING‐Zinc (RZ) fingers region and coiled‐coil domain. We also observed that both the RZ fingers region and the MATH domain are targets for ubiquitination. Although TRAF6 ubiquitination has emerged as a hallmark of activation, trans‐ubiquitination induced by two TRAF6 muteins is insufficient for NF‐κB activation. J. Cell. Biochem. 110: 763–771, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The ADAMs belong to a disintegrin-like and metalloproteinase-containing protein family that are zinc-dependent metalloproteinases. These proteins share all or some of the following domain structure: a signal peptide, a propeptide, a metalloproteinase, a disintegrin, a cysteine-rich, and an epidermal growth factor (EGF)-like domains, a transmembrane region, and a cytoplasmic tail. ADAMs are widely distributed in many organs, tissues, and cells, such as brain, testis, epididymis, ovary, breast, placenta, liver, heart, lung, bone, and muscle. These proteins are capable of four potential functions: proteolysis, adhesion, fusion, and intracellular signaling. Because the number of ADAM genes has grown rapidly and the biological functions of most members are unclear, this review analyzes the protein structures and functions, their activation and processing, their known and potential activities, and their evolutionary relationships. A sequence alignment of human ADAMs is compiled and their homology and physical data are calculated. The conceivable functions of ADAMs in reproduction, development, and diseases are also discussed.  相似文献   

12.
Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil spongeGeodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdr1.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species fromArchaea toVertebrata, and (ii) some special nucleotide similarities. This study was supported by grant ofInternal Grant Agency of the Ministry of Public Health of the Czech Republic no. 6747-3.  相似文献   

13.
Enteropathogenic Yersinia expresses several invasins that are fundamental virulence factors required for adherence and colonization of tissues in the host. Within the invasin‐family of Yersinia adhesins, to date only Invasin has been extensively studied at both structural and functional levels. In this work, we structurally characterize the recently identified inverse autotransporter InvasinE from Yersinia pseudotuberculosis (formerly InvasinD from Yersinia pseudotuberculosis strain IP31758) that belongs to the invasin‐family of proteins. The sequence of the C‐terminal adhesion domain of InvasinE differs significantly from that of other members of the Yersinia invasin‐family and its detailed cellular and molecular function remains elusive. In this work, we present the 1.7 Å crystal structure of the adhesion domain of InvasinE along with two Immunoglobulin‐like domains. The structure reveals a rod shaped architecture, confirmed by small angle X‐ray scattering in solution. The adhesion domain exhibits strong structural similarities to the C‐type lectin‐like domain of Yersinia pseudotuberculosis Invasin and enteropathogenic/enterohemorrhagic E. coli Intimin. However, despite the overall structural similarity, the C‐type lectin‐like domain in InvasinE lacks motifs required for Ca2+/carbohydrate binding as well as sequence or structural features critical for Tir binding in Intimin and β1‐integrin binding in Invasin, suggesting that InvasinE targets a distinct, yet unidentified molecule on the host‐cell surface. Although the biological role and target molecule of InvasinE remain to be elucidated, our structural data provide novel insights into the architecture of invasin‐family proteins and a platform for further studies towards unraveling the function of InvasinE in the context of infection and host colonization.  相似文献   

14.
15.
TSAd/Lad is a T cell adaptor molecule involved in p56 lck -mediated T cell activation. To investigate the functions of TSAd in T cells, we generated transgenic (TG) mice expressing the SH2 domain of TSAd (TSAd-SH2) under the control of the p56 lck proximal promoter. In T cells from TSAd-SH2 TG mice, T cell receptor (TCR)-mediated early signaling events, such as Ca2+ flux and ERK activation, were normal; however, late activation events, such as IL-2 production and proliferation, were significantly reduced. Moreover, TCR-induced cell adhesion to extracellular matrix (ECM) proteins and migration through ECM proteins were defective in T cells from TSAd-SH2 TG mice. Furthermore, the contact hypersensitivity (CHS) reaction, an inflammatory response mainly mediated by T helper 1 (Th1) cells, was inhibited in TSAd-SH2 TG mice. Taken together, these results show that TSAd, particularly the SH2 domain of TSAd, is essential for the effector functions of T cells.  相似文献   

16.
The stimulatory mAb F11 binds two platelet membrane proteins of 32 and 35 kDa and causes activation of platelets when cross-linked with the FcgammaRII receptor. We used bioinformatics to identify expressed sequence tags from libraries of cytokine-stimulated human endothelial cell (EC) cDNAs. The protein sequence deduced from full-length F11 cDNA was identical to partial sequences of peptides derived from affinity-purified platelet F11 antigen. F11 mRNA is expressed in human EC, macrophages, and a variety of non-hematopoietic vascular tissues. Expression of F11 mRNA is modulated by cytokines in EC and is up-regulated by oxidized low-density lipoprotein in human macrophages. The F11 receptor contains two immunoglobulin-like domains in its 236-amino-acid-long extracellular region, and has identity to the recently described junctional adhesion molecule. The data indicate that the F11 antigen is a novel receptor or cell adhesion molecule belonging to the immunoglobulin superfamily.  相似文献   

17.
A 150-kDa glycoprotein designated in the mouse as E-selectin ligand-1 (ESL-1; gene symbol Selel) was first isolated based on its ability to function as a ligand for E-selectin. The gene appears equivalent to that for membrane glycoprotein MG160 encoded in the human by the locus for Golgi apparatus protein 1 (GLG1). ESL-1 is also highly homologous to the chicken cysteine-rich fibroblast growth factor receptor (CFR). We describe the genomic structure and chromosomal localization of the Selel locus. The gene is encoded by 27 exons and extends over approximately 75 kb. It maps to murine Chromosome (Chr) 8 in a region homologous to human Chr 16q where the GLG1 locus maps, further indicating that Selel and GLG1 are mouse and human equivalents of the same gene. Received: 21 April 1999 / Accepted: 12 July 1999  相似文献   

18.
Binding of C1q to cell surfaces has been shown to mediate a number of biological activities including enhancement of phagocytosis and stimulation of superoxide production. Several C1q binding proteins have been proposed as candidate receptors for these functions. The 126-kDa human C1q membrane receptor, termed C1qRp, has recently been cloned. This molecule is believed to play a role in the enhancement of phagocytosis in monocytes and macrophages, and its expression has been shown to be restricted to cells of the myeloid lineage, endothelial cells, and platelets. Here we report the isolation and genomic characterization of the murine homolog of C1qRp. Degenerate oligonucleotide primers based on the published human sequence were used to amplify a region of the murine homolog spanning from the carbohydrate recognition domain to the fourth epidermal growth factor (EGF) domain. This fragment was used as a probe to isolate the murine gene from a 129/Sv genomic λ library. The predicted primary protein sequence displayed 68.1% identity with the human homolog. All the major structural domains were conserved between the two molecules. The coding sequence of the murine gene was contained within two exons separated by a small intron of approximately 250 bp. The structure of the human gene was found to be similar, with the position of the intron conserved. Cloning of the murine C1qRp will facilitate further investigation of the physiological function of this molecule. Received: 9 November 1998 / Accepted: 28 March 1999  相似文献   

19.

Background  

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals.  相似文献   

20.
We cloned a bovine cDNA encoding the neural adhesion molecule F3 and analyzed its nucleotide sequence. The coding region consisted of 3054 bp encoding 1018 amino acid (aa) residues. The Mr calculated from the deduced as sequence was 113 383. Bovine F3 had 93, 94 and 77% as identity with the mouse, human and chicken homologs, respectively. Bovine F3, similar to those of chicken and human, was devoid of two as residues (Ile-Thr) in the sixth immunoglobulin type C2-like domain, as compared with the mouse homolog. Parts of bovine F3 protein were overproduced in Escherichia coli. The antibodies raised against the recombinant proteins in rabbits reacted specifically with F3. F3 protein was detected in cerebellum, cerebrum and spinal cord in Western blot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号