首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

2.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

3.
Rapid effects of serum stimulation on electrical and ionic membrane properties and their relationship to the initiation of DNA synthesis and cell division have been investigated in mouse N1E-115 neuroblastoma cells. Addition of 10% fetal calf serum to serum-deprived N1E-115 cells results in the initiation of DNA synthesis after a lag of approximately 10 hr. The earliest events following serum addition include: transient membrane potential and resistance changes, detectable within seconds and lasting 5--10 min; a persistent increase in the initial rate of 22Na+ influx, the major part of which is not of electrodiffusional origin, and which is potentiated by weak acid anions; and an external Na+-dependent increase in the rate of the Na+, K+ pump. In the absence of serum the stimulation of the Na+, K+ pump can be mimicked by increasing net Na+ influx with monensin or neurotoxins. Growth-depleted serum fails to induce any of the electrical and ionic events. The diuretic amiloride (0.4 mM) inhibits serum-induced Na+ influx, Na+, K+ pump stimulation and DNA synthesis, but does not affect the electrical response or the basal influx rates. The results suggest that serum growth factors act, at least in part, by stimulating an electroneutral, amiloride-sensitive Na+/H+ exchange mechanism. The enhanced Na+ influx then results in the observed stimulation of the Na+, K+ pump, while the simultaneous efflux of protons may raise the intracellular pH.  相似文献   

4.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0 degrees C, but not at 23 degrees C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1-2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3-5 times, with the extent of stimulation dependent on the current density and the pulse width. Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ "gating" mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0 degrees C with 45Ca2+, Ca2+ efflux was rapid at 23 degrees C, but did not occur at 0 degrees C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.  相似文献   

6.
Mg-deficiency or Mg-loading of tumour cells changes the permeability of the cell membrane. The influence of this change on the K+ transport across the membrane was investigated using 86Rb+ and K+ analog. The time course of the influx and efflux rates were estimated by means of a mathematical approach for a two-compartment system with inconstant pool sizes. The comparison of the two states of the cells demonstrates that in Mg-deficient cells the passive K+ efflux is significantly enhanced (40%). This in turn stimulates the active counter transport mediated by the (Na+-K+)-ATPase, raising the ATP consumption by about 30%. However, the enzyme is not able to maintain the cellular K+ content under these conditions. After a short transient increase due to the initially enhanced influx the passive net efflux prevails. Differences in the electrophoretic mobility of the two states of the cells confirm Mg-dependent changes of the cell membrane structure.  相似文献   

7.
Using cultured cells of the marine alga, Halicystis parvula, we measured the concentrations of 11 inorganic ions in the vacuolar sap and the electrical potential difference (PD) between the vacuole and the external solution. In normal cells under steady-state conditions a comparison of the electrochemical equilibrium (Nernst) potential for each ion with the PD of -82 mV (inside negative) indicates that Na+ and K+ are actively transported out of the vacuole whereas all anions are pumped into the cell. Although the [K+] in the vacuole is only 9 mM, the cytoplasmic [K+] is about 420 mM, which suggests that the outwardly directed pump is at the tonoplast. Using large Halicystis cells we perfused the vacuole with an artificial seawater and conducted a short-circuit analysis of ion transport. The short-circuit current (SCC) of 299 peq - cm-2-s-1 is not significantly different from the net influx of Cl-. There is a small, but statistically significant net efflux of K+ (less than 1 pmol-cm-2.-1), while the influx and efflux of Na+ are not significantly different. Therefore, the SCC is a good measure of the activity of the Cl- pump. Finally, we measured the volumetric elastic modulus (epsilon) of the cell wall by measuring the change in cell volume when the internal hydrostatic pressure was altered. The value of epsilon at applied pressures between 0 and 0.4 atm is about 0.6 atm, which is at least 100-fold lower than the values of epsilon for all other algae which have been studied.  相似文献   

8.
The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.  相似文献   

9.
When human erythrocytes are suspended in low-Cl- media (with sucrose replacing Cl-), there is a large increase in both the net efflux and permeability of K+. A substantial portion (greater than 70% with Cl- less than 12.5 mM) of this K+ efflux is inhibited by the anion exchange inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). This inhibition cannot be explained as an effect of DIDS on net Cl- permeability (Pcl) and membrane potential, but rather represents a direct effect on the K+ permeability. When cells are reacted with DIDS for different times, the inhibition of K+ efflux parallels that of Cl- exchange, which strongly indicates that the band 3 anion exchange protein (capnophorin) mediates the net K+ flux. Since a noncompetitive inhibitor of anion exchange, niflumic acid, has no effect on net K+ efflux, the net K+ flow does not seem to involve the band 3 conformational change that mediates anion exchange. The data suggest that in low-Cl- media, the anion selectivity of capnophorin decreases so that it can act as a very low-conductivity channel for cations. Na+ and Rb+, as well as K+, can utilize this pathway.  相似文献   

10.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

11.
Cultured oligodendrocytes take up K+ triggered by an increase in [K+]o. Simultaneously [Cl-]i increases in the majority of the oligodendrocytes. This KCl uptake, which is not furosemide sensitive, can be explained by the following model. The first event is the entry of Cl- into the cell driven by the discrepancy between the membrane and Cl- equilibrium potential. As a consequence of the movement of negative charge across the membrane, K+ is driven into the cell. The prerequisites of this model, a passive Cl- distribution at resting membrane potential and a Cl- conductance of the membrane were found to exist in most cultured oligodendrocytes. The chloride equilibrium potential (-61 mV, SD +/- 10 mV) was slightly more positive than the membrane potential (-64 +/- 8 mV). Since cell input resistance determined with two independent electrodes increased by 11% (SD +/- 0.07) when [Cl-]o was reduced to 10 mM, part of the membrane conductance appears to be mediated by Cl-. Differences between membrane potential and Cl- equilibrium potential therefore will lead to Cl- fluxes across the membrane. In contrast with oligodendrocytes, [Cl-]i in astrocytes is significantly increased (from 20 to 40 mM) above the equilibrium distribution owing to the activity of an inward directed Cl- pump; this suggests a different mechanism of K+ uptake in these cells.  相似文献   

12.
The cellular mechanism of active chloride secretion, as it is manifested in the intestine and trachea, appears to possess the following elements: (1)NaCl cl-transport across the basolateral membrane; (2) Cl- accumulation in the cell above electrochemical equilibrium due to the Na+ gradient; (3) a basolateral Na+-K+ pump that maintains the Na+ gradient; (4) a hormone-regulated Cl- permeability in the apical membrane; (5) passive Na/ secretion through a paracellular route, driven by the transepithelial potential difference; and (6) an increase in basolateral membrane K+ permeability occurring in conjunction with an increase in Na+-K+ pump rate. Electrophysiological studies in canine trachea support this model. Adrenalin, a potent secretory stimulus in that tissue, increases apical membrane conductance through a selective increase in Cl- permeability. Adrenalin also appears to increase basolateral membrane K+ permeability. Whether or not adrenalin also increases paracellular Na+ permeability is unclear. Some of the testable implications of the above secretion model are discussed.  相似文献   

13.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 . 10(-3) M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl-) outward net flux uncoupled from net Na+ movement. Net K+ (Cl-) outward flux was half-maximally inhibited by 2 microM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

14.
Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2-5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 microM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport.  相似文献   

15.
Monensin-mediated ionic movements were studied in frog skeletal muscle. The ionophore, which forms electrically neutral complexes with monovalent cations, induced dose dependent fluxes of Na+, K+ and H+ in and out of the fibers. Monensin concentrations ([MON]) ranged from 2 to 40 microM. In the presence of normal Ringer's solution the following maximum ionic exchanges were generated by monensin (in pmol cm-2 s-1): (1) Nai+/Nao+ 112, (2) Nai+/Ho+ 30.7, (3) Ki+/Nao+ 14.2 (4) Hi+/Nao+ 49. The maximum net fluxes produced by these exchanges (i.e. for [MON] = infinity) are (in pmol cm-2 s-1): Na+ (inward) 32.5, K+ (outward) 14.2, H+ (outward) 18.3. The last one appears to be largely offset by a passive (monensin-independent) H+ influx down an inwardly directed electrochemical gradient promoted by pH reduction of the T-tubular lumen content as a consequence of the monensin-mediated net H+ efflux. Maximum unidirectional cationic fluxes mediated by monensin amounted to 206 pmol cm-2 s-1 and had the following composition: influx: 85% Na+ and 15% H+; efflux: 69% Na+, 7% K+, 24% H+.  相似文献   

16.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

17.
Mouse 3T3 fibroblasts have a loop diuretic sensitive Na+ transport system, responsible for more than 50% of the total Na+ influx. This transport system is dependent on the simultaneous presence of all three ions; Na+, K+, (Rb+) and Cl- in the extracellular medium. The same requirement for these three ions was also found for the loop diuretic-sensitive K+ efflux. In addition, the sensitivities of Na+ influx and Rb+ efflux for the two loop diuretics, furosemide and bumetanide were found to be similar. The similar ionic requirement and sensitivity towards loop diuretics of the two fluxes, support the hypothesis, that this loop diuretic-sensitive Na+ influx in mouse 3T3 cells, is accompanied by the net loop diuretic-sensitive K+ efflux.  相似文献   

18.
D McLaggan  M Keyhan    A Matin 《Journal of bacteriology》1990,172(3):1485-1490
The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells.  相似文献   

19.
Summary (1) Effects of the metabolic inhibitor 2,4-dinitrophenol (DNP) on electrical activity in frog atria were studied by means of the sucrose-gap technique and in tracer experiments. (2) Voltage-clamp studies of ionic membrane currents showed a suppression by DNP of peak Na inward current without marked changes in the kinetics of the Na-carrying system and an increase of steady state outward current to three to five times its normal value. In42K tracer experiments, DNP increased K resting efflux by about 10% and decreased K influx by 25 to 30%. (3) The depression of Na inward current is regarded as being caused by a partial block of Na channels and an increase of internal Na concentration after inhibition of active Na extrusion. (4) The strong rise in outward current is probably not caused by a K current since K efflux fails to show a correspondingly large change. As a possible explanation for current and flux changes, an electrogenic K pump is discussed. (5) A mathematical model of a carrier system transporting a single ion species is described. The system is designed as a direct potential pump. Uphill transport requires an asymmetry of the rate constants governing the cyclic formation and breakdown of carrier-ion complex. The asymmetry is brought about by an input of metabolic energy. Reduction of energy input decreases the asymmetry and induces a carrier-mediated downhill ion movement, with corresponding changes in membrane current and ion fluxes. (6) A model of electrogenic K inward transport is calculated that approximately accounts for the steady state current and the K flux changes experimentally observed after inhibition.  相似文献   

20.
The ion transport mechanism that regulates intracellular pH (pHi) in giant barnacle muscle fibers was studied by measuring pHi and unidirectional Na+ fluxes in internally dialyzed fibers. The overall process normally results in a net acid extrusion from the cell, presumably by a membrane transport mechanism that exchanges external Na+ and HCO-3 for internal Cl- and possibly H+. However, we found that net transport can be reversed either by lowering [HCO-3]o and pHo or by reducing [Na+]o. This reversal (acid uptake) required external Cl-, was stimulated by raising [Na+]i, and was blocked by SITS. When the transporter was operating in the net forward direction (acid extrusion), we found a unidirectional Na+ influx of approximately 60 pmol . cm-2 . s-1, which required external HCO-3 and internal Cl- and was stimulated by cyclic AMP and blocked by SITS or DIDS. These properties of the Na+ influx are all shared with the net acid extrusion process. We also found that under conditions of net forward transport, the pHi-regulating system mediated a unidirectional Na+ efflux, which was significantly smaller than the simultaneous Na+ influx. These data are consistent with a reversible transport mechanism which, even when operating in the net forward direction, mediates a small amount of reversed transport. We also found that the ouabain-sensitive Na+ efflux was sharply inhibited by acidic pHi, being totally absent at pHi values below approximately 6.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号