首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural results for different types of protein–rich cells in five families generally accepted as Capparalean (Brassicaceae, Capparaceae, Resedaceae, Tovariaceae and Moringaceae) and two others (Gyrostemonaceae and Bataceae) considered by some workers to be Capparalean, support their alignment in the order Capparales. The term myrosin cell is used for those protein–rich cells which are typically idio–blastic and characterized by a homogenous, granular proteinaceous material in the vacuole and a cytoplasm which is filled with an extensive rough endoplasmic reticulum. This idioblastic myrosin cell type is characteristic for the Brassicaceae, Capparaceae, Tovariaceae, Moringaceae and Gyrostemonaceae. The guard cells of stomata may appear as myrosin cells, in which case they are termed guard–cell myrosin cells; they are found in the Resedaceae, Tovariaceae and Bataceae. Other proteinaceous cells are those with protein–rich dilated cisternae (DC) of the endoplasmic reticulum (ER). One type is the organelle–like DC, utricular or irregular dilations of the ER, filled with protein and ribosome–studded. Utricular DC are characteristic for the Brassicaceae and Capparaceae. Another type of DC is represented by protein–containing vacuoles derived from the ER, protein–rich ER–dependent vacuoles; these are found in the Brassicaceae, Capparaceae, Resedaceae, Tovariaceae and Gyrostemonaceae. The myrosin cells and cells with protein–rich dilated cisternae are here regarded as taxonomic criteria for the order Capparales.  相似文献   

2.
Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former myrosin cells) occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.Abbreviations ABB aniline blue black - DC dilated cisternae - EM electron microscopy - ER endoplasmic reticulum - GMA glycolmethacrylate - LM light microscopy - MBB mercuric bromphenol blue - PAC protein-accumulating cells - PAS periodic acid-Schiff Recipient of an Alexander von Humboldt Award and in residence at the University of Heidelberg during the period when this research was carried out. Permanent address: Department of Botany and Cell Research Institute, University of Texas, Austin, Texas 78712, USA  相似文献   

3.
Disturbances in proteostasis are observed in many neurodegenerative diseases. This leads to activation of protein quality control to restore proteostasis, with a key role for the removal of aberrant proteins by proteolysis. The unfolded protein response (UPR) is a protein quality control mechanism of the endoplasmic reticulum (ER) that is activated in several neurodegenerative diseases. Recently we showed that the major proteolytic pathway during UPR activation is via the autophagy/lysosomal system. Here we investigate UPR induction if the other major proteolytic pathway of the ER -ER associated degradation (ERAD)-is inhibited. Surprisingly, impairment of ERAD results in decreased UPR activation and protects against ER stress toxicity. Autophagy induction is not affected under these conditions, however, a striking relocalization of the lysosomes is observed. Our data suggest that a protective UPR-modulating mechanism is activated if ERAD is inhibited, which involves lysosomes. Our data provide insight in the cross-talk between proteolytic pathways involved in ER proteostasis. This has implications for neurodegenerative diseases like Alzheimer’s disease where disturbed ER proteostasis and proteolytic impairment are early phenomena in the pathology.  相似文献   

4.
Paired cisternae of rough endoplasmic reticulum linked together by two parallel structures exhibiting periodic striations have been observed in the cytoplasm of small pre-antrum oocytes in the golden hamster. They are present only in oocytes from animals older than 3 weeks of age. Two or more such pairs may be associated with one another, and similar structures have been observed in contact with the nuclear envelope. The peak incidence of the paired membranes coincides with a sharp increase in rough endoplasmic reticulum as the oocyte commences rapid growth. A suggested role for the paired membranes in production of new endoplasmic reticulum is discussed.  相似文献   

5.
6.
7.
8.
9.
Resolution of the heavy microsomal fraction of lung tissue by Ficoll density gradient centrifugation yielded a rough endoplasmic reticulum microsomal fraction containing the highest specific activity of detergent-released lysyl hydroxylase. This same microsomal fraction was previously shown to contain the highest specific activity of detergent-released prolyl hydroxylase activity. When hydroxylation was inhibited during the biosynthesis of collagen, this microsomal fraction contained lysine-rich, hydroxylysine-deficient, collagenase-digestible substrate that could be hydroxylated in the absence of detergent. The results indicate coordinate localization of both prolyl and lysyl hydroxylation reactions within the cisternae of the rough endoplasmic reticulum.  相似文献   

10.
The infection of murine fibroblasts of the sac- line with a coronavirus, mouse hepatitis virus strain A59 (MHV-A59), results in a novel modification to some cisternae of the rough endoplasmic reticulum (RER). From 8 hours post infection (h.p.i.) we see in thin sections pairs of cisternae closely, stably and uniformly aligned. Serial sectioning shows that the regions of pairing or lamination extend for many thousands of nm in two dimensions, with the spacing between the juxtaposed membranes remaining very uniform at about 18 nm. These structures appear coincident with the onset of accumulation of the viral glycoprotein E1 in the RER membrane but 2 hours after the viral glycoprotein E2 can first be detected there. Ribosomes are excluded from the paired cisternal surfaces, while budding of progeny virions has never been seen at the cisternal membranes facing the cytosol, although ribosomes bind there. The lumina of paired cixternae are usually devoid of virions which, however, accumulate in areas where the paired cisternae diverge. Electron immunocytochemistry shows that both E1 and E2 glycoproteins are abundant in the paired cisternae. Following labelling for the E1 glycoprotein we see a periodic fine structure, rows of "beads" with a centre to centre spacing of about 7.5 nm, in the region between the paired membranes. In oblique sections of this region in cells fixed as if for the immunoperoxidase labelling, but omitting all its steps we see parallel rows of "beads" separated by about 7 nm. We suggest that the membrane spanning viral glycoprotein E1 together with viral nucleocapsids may be involved in laminating cisternae of the RER.  相似文献   

11.
In the cells of the middle layer of the proventriculus of Drosophila auraria larvae, the nuclear envelope and the rough endoplasmic reticulum are always found in the form of dilated cisternae. The length of these cisternae can reach 10 mu. There are indications that materials from the outer membrane of the nuclear envelope are directly transported to the Golgi complex of the examined cells.  相似文献   

12.
Summary Ultrathin sections through the median plane of norm al, 48-hrs-old seedling roots of cress, showed the presence of accumulations of a finely fibrillar material. These inclusions were confined to the cisternae of the granular endoplasmic reticulum of surface cell layers of the root tip and the root-hair zone. The rod-shaped structure and random orientation of these inclusions were clearly seen in 3-dimensional reconstructions of serial ultrathin sections.  相似文献   

13.
《Autophagy》2013,9(4):622-623
Eukaryotic cells have developed sophisticated strategies to contend with environmental stresses faced in their lifetime. Endoplasmic reticulum (ER) stress occurs when the accumulation of unfolded proteins within the ER exceeds the folding capacity of ER chaperones. ER stress responses have been well characterized in animals and yeast, and autophagy has been suggested to play an important role in recovery from ER stress. In plants, the unfolded protein response signaling pathways have been studied, but changes in ER morphology and ER homeostasis during ER stress have not been analyzed previously. Autophagy has been reported to function in tolerance of several stress conditions in plants, including nutrient deprivation, salt and drought stresses, oxidative stress, and pathogen infection. However, whether autophagy also functions during ER stress has not been investigated. The goal of our study was to elucidate the role and regulation of autophagy during ER stress in Arabidopsis thaliana.  相似文献   

14.
We have developed a procedure to isolate, from skeletal muscle, enriched terminal cisternae of sarcoplasmic reticulum (SR), which retain morphologically intact junctional "feet" structures similar to those observed in situ. The fraction is largely devoid of transverse tubule, plasma membrane, mitochondria, triads (transverse tubules junctionally associated with terminal cisternae), and longitudinal cisternae, as shown by thin-section electron microscopy of representative samples. The terminal cisternae vesicles have distinctive morphological characteristics that differ from the isolated longitudinal cisternae (light SR) obtained from the same gradient. The terminal cisternae consist of two distinct types of membranes, i.e., the junctional face membrane and the Ca2+ pump protein-containing membrane, whereas the longitudinal cisternae contain only the Ca2+ pump protein-containing membrane. The junctional face membrane of the terminal cisternae contains feet structures that extend approximately 12 nm from the membrane surface and can be clearly visualized in thin section through using tannic acid enhancement, by negative staining and by freeze-fracture electron microscopy. Sections of the terminal cisternae, cut tangential to and intersecting the plane of the junctional face, reveal a checkerboardlike lattice of alternating, square-shaped feet structures and spaces each 20 nm square. Structures characteristic of the Ca2+ pump protein are not observed between the feet at the junctional face membrane, either in thin section or by negative staining, even though the Ca2+ pump protein is observed in the nonjunctional membrane on the remainder of the same vesicle. Likewise, freeze-fracture replicas reveal regions of the P face containing ropelike strands instead of the high density of the 7-8-nm particles referable to the Ca2+ pump protein. The intravesicular content of the terminal cisternae, mostly Ca2+-binding protein (calsequestrin), is organized in the form of strands, sometimes appearing paracrystalline, and attached to the inner face of the membrane in the vicinity of the junctional feet. The terminal cisternae preparation is distinct from previously described heavy SR fractions in that it contains the highest percentage of junctional face membrane with morphologically well-preserved junctional feet structures.  相似文献   

15.
Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.  相似文献   

16.
Close membrane associations between the endoplasmic reticulum and the plasma membrane (ER-PM) occur in specialized regions of the rat Sertoli cell cytoplasm. They are characterized, in freeze fracture replicas, as mesa-like modifications of E membrane fracture faces or as corresponding discoid depressions on P membrane fracture faces. When these structures lie along transitional regions in the membrane fracture plane, they are seen to be complementary, and the space between them to be greatly reduced. These specialized close membrane associations may represent adhesive sites between the endoplasmic reticulum and the plasma membrane. However, their resemblance to vascular endothelial fenestrae which are known to be sites of increased membrane permeability may suggest other functional roles.  相似文献   

17.
Studies on pancreatic acinar cells provided the original evidence for the Ca(2+) releasing action of inositol 1,4,5-trisphosphate (IP(3)). Ironically, this system has presented problems for the general theory that IP(3) acts primarily on the endoplasmic reticulum (ER), because the IP(3)-elicited Ca(2+) release occurs in the apical pole, which is dominated by zymogen granules (ZGs) and apparently contains very little ER. Using confocal and two-photon microscopy and a number of different ER-specific fluorescent probes, we have now investigated in detail the distribution of the ER in living pancreatic acinar cells. It turns out that although the bulk of the ER, as expected, is clearly located in the baso-lateral part of the cell, there is significant invasion of ER into the granular pole and each ZG is in fact surrounded by strands of ER. This structural evidence from living cells, in conjunction with recent functional studies demonstrating the high Ca(2+) mobility in the ER lumen, provides the framework for a coherent and internally consistent theory for cytosolic Ca(2+) signal generation in the apical secretory pole, in which the primary Ca(2+) release occurs from ER extensions in the granular pole supplied with Ca(2+) from the main store at the base of the cell by the tunnel function of the ER.  相似文献   

18.
Summary The form and differentiation of the endoplasmic reticulum has been studied in the developing sperm of the crayfish, Cambaroides japonicus. Throughout development a relationship between the nuclear envelope and cytoplasmic portion of the endoplasmic reticulum has been shown to exist. Furthermore, large contributions of material from the nuclear envelope to extranuclear cytoplasmic systems has been noted in the development of early spermatids and nearly mature sperm.A sequential predominance of several types of endoplasmic reticulum has been described in the differentiating sperm. An agranular vesicular reticulum is the most common in the early stages although annulate lamellar stacks and rough surfaced stacks are scattered randomly throughout the cytoplasm. Blebs of the nuclear envelope appear to contribute rough surfaced reticulum to the cytoplasmic system in the early spermatid. A fusion of vesicular elements results in the formation of the dense filamentous reticulum which is typical of the nearly mature sperm. Densely packed lamellae develop on the nuclear envelope in the maturing sperm and are connected to both the nuclear envelope and filamentous endoplasmic reticulum. The possible relationships of these lamellar groups to mitochondria or Golgi is discussed.Supported in part by Grant No B-2314 of the National Institute of Neurological Diseases and Blindness, U.S. Public Health Service.Predoctoral Research Fellow of the National Institute of Neurological Diseases and Blindness, U.S. Public Health Service.  相似文献   

19.
The dynamin family of large GTPases has been implicated in vesicle formation from both the plasma membrane and various intracellular membrane compartments. The dynamin-like protein DLP1, recently identified in mammalian tissues, has been shown to be more closely related to the yeast dynamin proteins Vps1p and Dnm1p (42%) than to the mammalian dynamins (37%). Furthermore, DLP1 has been shown to associate with punctate vesicles that are in intimate contact with microtubules and the endoplasmic reticulum (ER) in mammalian cells. To define the function of DLP1, we have transiently expressed both wild-type and two mutant DLP1 proteins, tagged with green fluorescent protein, in cultured mammalian cells. Point mutations in the GTP-binding domain of DLP1 (K38A and D231N) dramatically changed its intracellular distribution from punctate vesicular structures to either an aggregated or a diffuse pattern. Strikingly, cells expressing DLP1 mutants or microinjected with DLP1 antibodies showed a marked reduction in ER fluorescence and a significant aggregation and tubulation of mitochondria by immunofluorescence microscopy. Consistent with these observations, electron microscopy of DLP1 mutant cells revealed a striking and quantitative change in the distribution and morphology of mitochondria and the ER. These data support very recent studies by other authors implicating DLP1 in the maintenance of mitochondrial morphology in both yeast and mammalian cells. Furthermore, this study provides the first evidence that a dynamin family member participates in the maintenance and distribution of the ER. How DLP1 might participate in the biogenesis of two presumably distinct organelle systems is discussed.  相似文献   

20.
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of ER chaperones and foldases under stress conditions, to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI) or immunophilins, calnexin and calreticulin.Key words: Abiotic stress, chaperones, endoplasmic reticulum, foldases, immunophilins, protein folding, signal transduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号