首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence that three inhibitors of Na,K-ATPase activity--ouabain, K-free extracellular fluid, and vanadate--inhibit renin secretion by increasing Ca2+ concentration in juxtaglomerular cells, but in the case of vanadate, it is uncertain whether the increase in Ca2+ is due to a decrease in Ca2+ efflux (inhibition of Ca-ATPase activity, or inhibition of Na,K-ATPase activity, followed by an increase in intracellular Na+ and a decrease in Na-Ca exchange) or to an increase in Ca2+ influx through potential operated Ca channels (inhibition of electrogenic Na,K transport, followed by membrane depolarization and activation of Ca channels). In the present experiments, the rat renal cortical slice preparation was used to compare and contrast the effects of ouabain, of K-free fluid, and of vanadate on renin secretion, in the absence and presence of methoxyverapamil, a Ca channel blocker. Basal renin secretory rate averaged 7.7 +/- 0.3 GU/g/60 min, and secretory rate was reduced to nearly zero by 1 mM ouabain, by K-free fluid, by 0.5 mM vanadate, and by K-depolarization (increasing extracellular K+ to 60 mM). Although 0.5 microM methoxyverapamil completely blocked the inhibitory effect of K-depolarization, it failed to antagonize the inhibitory effects of ouabain, of K-free fluid, and of vanadate. A concentration of methoxyverapamil two hundred times higher (100 microM) completely blocked the inhibitory effects of vanadate, but still failed to antagonize the effects of ouabain and of K-free fluid. Collectively, these observations demonstrate that vanadate-induced inhibition of renin secretion cannot be attributed entirely to Na,K-ATPase inhibition, since in the presence of methoxyverapamil, the effect of vanadate differed from the effects of either ouabain (a specific Na,K-ATPase inhibitor) or K-free fluid. Moreover, it cannot be attributed entirely to a depolarization-induced influx of Ca2+ through potential-operated Ca channels, since methoxyverapamil antagonized K-depolarization-induced inhibition of renin secretion much more effectively than it antagonized vanadate-induced inhibition.  相似文献   

2.
These experiments were designed to test the hypothesis that cyclosporine A (CSA) inhibits renin secretion and stimulates renal prostaglandin E2 (PGE2) release in vitro. In rat renal cortical slices incubated at 37 degrees C in a buffered and oxygenated physiological saline solution containing 4 mM KCl, CSA concentrations ranging from 1 to 30 microM had no significant effect on renin secretion. Furthermore, partial depolarization of the cells, produced by increasing extracellular KCl concentration to 20 mM, failed to reveal any latent inhibitory or stimulatory effects of CSA on renin secretion. On the other hand, PGE2 release was significantly inhibited by CSA over the same range of concentrations. This inhibitory effect might be explained by the previous findings of others, that CSA inhibits phospholipase A2 activity, thereby decreasing arachidonic acid production, the rate-limiting step in PG synthesis. In conclusion, CSA inhibits PGE2 release but fails to affect renin secretion in vitro. These results suggest that the occasional effects of CSA on renin secretion in intact animals must be attributable to indirect and/or chronic effects.  相似文献   

3.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

4.
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.  相似文献   

5.
Renin release from rat renal cortical slices was measured as a function of the concentration of K in the incubation medium. Release was completely abolished within a 30-minute period of exposure to nominally K-free or to 1.0 mM K media. Release tended to increase with increasing K, over the range 2 – 6 mM, although release was near maximal at 2.0 mM K. Omission of Ca from the incubation medium prevented the full inhibitory effect of nominally K-free medium. It is suggested that Ca accumulation, perhaps via Na-Ca exchange, is required to produce the inhibitory effect of low K medium on renin release in vitro.  相似文献   

6.
The sperm acrosome reaction is a Ca(2+)-dependent secretory event required for fertilization. Adhesion to the egg's zona pellucida promotes Ca2+ influx through voltage-sensitive channels, thereby initiating secretion. We used potentiometric fluorescent probes to determine the role of sperm membrane potential in regulating Ca2+ entry. ZP3, the glycoprotein agonist of the zona pellucida, depolarizes sperm membranes by activating a pertussis toxin-insensitive mechanism with the characteristics of a poorly selective cation channel. ZP3 also activates a pertussis toxin-sensitive pathway that produces a transient rise in internal pH. The concerted effects of depolarization and alkalinization open voltage-sensitive Ca2+ channels. These observations suggest that mammalian sperm utilize membrane potential-dependent signal transduction mechanisms and that a depolarization pathway is an upstream transducing element coupling adhesion to secretion during fertilization.  相似文献   

7.
Voltage dependent calcium channel expression in isolated osteoclasts   总被引:1,自引:0,他引:1  
In this study the expression of voltage-dependent calcium channels on osteoclast plasma membrane has been investigated. We found that osteoclasts were sensitive to KCl-induced depolarization. In this circumstance a 4 fold transient cytosolic calcium concentration ([Ca2+]i) increase was observed. This increase was dose-dependent. Its half maximal effect was achieved at 30 mM KCl. Voltage sensitive calcium channels in osteoclasts were inhibited by specific antagonists. Nicardipine, a dihydropyridine derivative, was the most effective, inducing complete block of the channels at 10(-6) M. Verapamil (phenylalkylamine) and diltiazem (benzodiazepine) were less effective. These results are consistent with the presence, on the osteoclast membrane, of L-type voltage-sensitive calcium channels.  相似文献   

8.
Lead Enters Bovine Adrenal Medullary Cells Through Calcium Channels   总被引:17,自引:1,他引:16  
Agents that stimulate secretion also accelerate the rate of Pb uptake into adrenal medullary cells. For example, when cells are suspended in a medium containing 5 microM Pb2+, depolarization by 77 mM K increases the rate of Pb uptake from 12 +/- 1 to 47 +/- 5 mumol/(L cells X min). K-induced Pb uptake has an apparent Km for Pb2+ of 2.6 microM, and is antagonized by Ca2+ with a K0.5 of 1.4 mM. The Ca channel blocker D-600 inhibits Pb entry with a K0.5 of 0.4 microM. Pb uptake is also stimulated by the Ca channel agonist BAY K 8644. These observations suggest that Pb passes through Ca channels. The permeability of the channels to Pb appears to be at least 10 times the permeability to Ca.  相似文献   

9.
Antibodies to GM1 ganglioside enhance the release of gamma-aminobutyric acid (GABA) from rat brain slices induced by depolarization with either 40 mM K+ or 200 microM veratrine. Three new observations are now reported. (a) GABA release induced by the Ca2+ ionophore A23187 was not affected by these antibodies. Because this Ca2+ ionophore causes transmitter release by bypassing depolarization-induced opening of Ca2+ channels, this result suggests that gangliosides participate either in the functioning of such Ca2+ channels or in the Na+ channels involved in depolarization. (b) The enhancement (by antibodies to GM1 ganglioside) of GABA release induced by high K+ levels occurred in the presence of tetrodotoxin (0.01 microM). (c) GABA release induced by veratrine in the absence of Ca2+ was not affected by the antibodies. These latter two observations indicate that Na+ channels are not involved in the action of the antibodies. We conclude that this evidence points to the participation of gangliosides in Ca2+ channel functions involved in GABA release in rat brain slices.  相似文献   

10.
Increased Ca2+ influx serves as a signal that initiates multiple biochemical and physiological events in neurons following depolarization. The most widely studied of these phenomena is the release of neurotransmitters. In sympathetic neurons, depolarization also increases the rate of synthesis of the transmitter norepinephrine (NE), via an activation of the enzyme tyrosine hydroxylase (TH), and this effect also seems to involve Ca2+ entry. We have examined whether the mechanism of Ca2+ entry relevant to TH activation is via voltage-sensitive Ca2+ channels and, if so, whether the type of Ca2+ channel involved is the same as that involved in the stimulation of NE release. We have investigated the isolated rat iris, allowing us to examine transmitter biosynthesis and release in sympathetic nerve terminals in the absence of sympathetic cell bodies and dendrites. Potassium depolarization produced a three- to fivefold increase in TH activity and an approximately 100-fold increase in NE release. Both effects were dependent on Ca2+ being present in the extracellular medium, and both were inhibited by omega-conotoxin (1 microM), which inhibits N-type voltage-sensitive Ca2+ channels. In contrast, the dihydropyridine nimodipine (1-3 microM), which blocks L-type Ca2+ channels, had no effect on either measure. These data support the hypothesis that increases in NE biosynthesis and release in sympathetic nerve terminals during periods of depolarization are both initiated by an influx of Ca2+ through voltage-sensitive Ca2+ channels and that a similar type of Ca2+ channel is involved in both processes.  相似文献   

11.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

12.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

13.
Changes in extracellular potassium concentration ([K+]o) modulate a variety of neuronal functions. However, whether axonal transport, which conveys materials to the appropriate destination for morphogenesis and other neuronal functions, depends on the extracellular K+ environment remains unclear. We therefore examined the effects of changes in [K+]o on axonal transport of particles visualized by video-enhanced microscopy in cultured mouse dorsal root gan-glion neurites. Increases in [K+]o (delta[K+]o > or = 2.5 mM) from control concentration (5 mM) inhibited both anterograde and retrograde axonal transport within a few minutes in a concentration-dependent manner. Conversely, removal of extracellular K+ induced the rapid facilitation of transport in both directions. These inhibitory and facilitatory responses were completely blocked by the K+ channel blocker tetraethylammonium (TEA), suggesting that the effect of changes in [K+]o involves the TEA-sensitive K+ channels. Increases in [K+]o provoked membrane depolarization in the absence and presence of TEA. Another depolarizing agent, veratridine, did not produce an effect on axonal transport. These results suggest that the extracellular K+-mediated inhibition of axonal transport does not depend on membrane depolarization. The inhibitory effect of increasing [K+]o on axonal transport was retained in calcium (Ca2+)-free extracellular medium, indicating that the inhibitory effect of extracellular K+ does not result from Ca2+ influx through voltage-dependent Ca2+ channels. In chloride (CI-)-free medium, increasing [K+]o failed to inhibit axonal transport, implying that the extracellular K+-mediated inhibition of axonal transport may be due to an increase in intracellular Cl- concentration associated with increases in the net inward movement of K+ and CI- across the membrane. Our results suggest that the extracellular K+ environment is involved in the rapid modulation of axonal transport of particles in dorsal root ganglion neurites.  相似文献   

14.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

15.
The inhibitory effects of the Ca2+ channel antagonists D-600, diltiazem, nifedipine and seven 1,4-dihydropyridine analogs of nifedipine against 80 mM K+ depolarization induced responses in guinea pig trachea, parenchyma, and pulmonary artery and rat renal and mesenteric artery preparations were determined. Together with similar data previously obtained for guinea pig ileum and bladder, these data permitted an assessment of tissue selectivity of action in smooth muscles of a series of Ca2+ channel antagonists under constant conditions (saline composition) and an identical challenge (K+ depolarization). Very similar rank orders of activity were expressed in all tissues suggesting that the same basic structure-activity relationship operates. However, the series of antagonists were significantly less active in respiratory smooth muscle than in other visceral or vascular smooth muscles. pA2 values for a series of 1,4-dihydropyridine antagonists measured in guinea pig taenia coli against Ca2+-induced responses in K+-depolarizing media correlated with mean inhibitory concentration values against K+-induced responses, suggesting that the latter were an appropriate measure of antagonist potency. pA2 values measured for nifedipine, D-600, and diltiazem against Ca2+-induced responses in taenia coli in the presence of a depolarizing K+ saline, or methylfurmethide, histamine, or 5-hydroxytryptamine did not differ, suggesting that the same channels were activated regardless of stimulant.  相似文献   

16.
Diltiazem was able to decrease the oxygen consumption rate and lactate production in synaptosomes isolated from rat forebrains, both under control and depolarized (40 microM veratridine) conditions, starting from a concentration of 250 microM. This effect was particularly evident when synaptosomes were depolarized by veratridine. This depolarization-counteracting action was evident also when transplasma membrane K+ diffusion potentials were measured after depolarization induced by veratridine and by rotenone with a glucose shortage. The concentrations of ATP, phosphocreatine, and creatine were less sensitive to diltiazem action. The concentration/response relationships were the same as those found for the oxygen consumption were the same as those found for the oxygen consumption rate, lactate production, and K+ diffusion potentials. The effects of 0.5 mM diltiazem in counteracting inhibition of energy metabolism induced by rotenone without glucose were no longer detectable when either Ca2+ or Na+ was absent from the incubation medium of synaptosomes. Diltiazem at the same concentrations (starting from 250 microM) was able to inhibit both the veratridine-induced and the rotenone-without-glucose-induced increase in intrasynaptosomal free Ca2+ levels evaluated with the fluorescent probe quin2. The results are discussed in view of a possible effect of diltiazem on voltage-dependent Na+ channels and the possibility of utilizing this approach for counteracting neuronal failure due to derangement of energy metabolism or hyperexcitation.  相似文献   

17.
We examined the effect of phorbol esters on phospholipase C activation in rat brain cortical slices and membranes. There was little effect of concurrent addition of phorbol 12-myristate 13-acetate (PMA) with carbachol on phosphoinositide breakdown due to carbachol over a 1-h incubation of brain slices. However, if slices were preincubated for 3 h with 1 microM PMA or 200 microM sphingosine before addition of carbachol, there was a 35-50% inhibition of phosphoinositide breakdown. There was also a marked loss of protein kinase C (PKC) activity from both cytosol and membranes after a 3-h exposure to PMA. The loss in responsiveness to the muscarinic agonists in slices was not reflected in carbachol-stimulated phospholipase C activation using isolated membranes. However, the decrease in carbachol-induced phosphoinositide breakdown seen in slices after a 3-h exposure to PMA was abolished if the extracellular K+ concentration was elevated from 5.9 to 55mM. Because elevation of the K+ level induces depolarization and increases Ca2+ entry, we examined the effect of ionomycin, a Ca2+ ionophore. Ionomycin potentiated the effects of carbachol on phosphoinositide breakdown but was unable to reverse the effects of a 3-h incubation with PMA. Because apamin, an inhibitor of Ca2(+)-dependent K+ channels, mimicked the effects of exposure to PMA for 3 h, it is possible that these channels are involved in muscarinic cholinergic regulation of phosphoinositide breakdown in rat brain slices. These results support the hypothesis that prolonged PMA treatment in rat brain cortex has no direct effect on phospholipase C activation by muscarinic cholinergic stimulation.  相似文献   

18.
The current studies describe a new, robust cell-based functional assay useful to characterize L-type voltage-dependent calcium channels and their antagonists. The basis of this assay is measurement in plate format of Ca2+ influx through the L-type Ca2+ channel complex (alpha1C, alpha2delta, and beta2a subunits) in response to potassium-mediated depolarization; EC(50)=11 mM [K+](o). The Ca2+ influx was inhibited by the L-type Ca2+ channel antagonist, nimodipine; IC(50)=59 nM. These cells were also transfected with the Kir2.3 inward rectifier K(+) channel, which allows for changing the cell membrane potential by modulation of extracellular [K](o); -65 mV in physiological [K](o) and -28 mV in 30 mM [K](o) containing buffer. The conformational state of the voltage-sensitive Ca2+ channel is altered under these different conditions. Under the depolarized condition, nimodipine was a more potent antagonist, inhibiting Ca2+ influx with an IC(50) value of 3 nM. The results demonstrate that the interaction of nimodipine and other antagonists with the channel is modulated by changes in membrane potential and thus the state of the channel. Overall, this novel assay can be used to identify state-dependent calcium channel antagonists and should be useful for evaluating state-dependent inhibitory potency of a large number of samples.  相似文献   

19.
Intracellular Ca (Cai) is an inhibitory second messenger in renin secretion, and it has been hypothesized that some first messengers--especially angiotensin II [A-II] and antidiuretic hormone [ADH], and possibly A1-adenosine receptor antagonists as well--increase Cai and thereby inhibit renin secretion by causing the release or mobilization of Ca from intracellular sites of sequestration. The present experiments were designed to test this hypothesis, by using 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB-8), a putative antagonist of Ca release from intracellular sequestration sites. The rat renal cortical slices preparation was used. Basal renin secretory rate was unaffected by 1 and 10 microM TMB-8, but more than doubled in response to 100 microM TMB-8. Basal renin secretory rate was inhibited by A-II (1 microM), by ADH (200 units/1), by an A1-adenosine receptor agonist (N6-cyclohexyladenosine, or CHA; 0.5 microM), and by an alpha-adrenergic agonist (methoxamine; 10 microM). Only the inhibitory effect of methoxamine was blocked by 1 and 10 microM TMB-8, but these concentrations had no effect on basal secretory rate. At 100 microM, TMB-8 blocked the inhibitory effects of ADH as well as of methoxamine, but failed to block the inhibitory effects of CHA and A-II. However, these observations cannot be taken as evidence that methoxamine and ADH, but not CHA and A-II, inhibit renin secretion by a mechanism involving release of Ca from intracellular sequestration sites, because 100 microM TMB-8 clearly had non-specific effects. Among them, it completely blocked the inhibitory effect of K-depolarization on renin secretion. Collectively, at least three separate actions of TMB-8 must be invoked to explain the present results. Likely candidates are an Na-channel blocking effect and a Ca channel blocking effect in addition to antagonism of the release of Cai.  相似文献   

20.
Chick neural retina cells contain functional L-type voltage-dependent Ca2+ channels sensitive to 1,4-dihydropyridines. To investigate the effects of chronic depolarization, cells were grown in medium containing elevated K+. After 4-h to 4-day treatments with elevated K+ (12-73 mM), there was a concentration-dependent decrease in high affinity [3H]PN200-110 binding. Saturation analysis of cells treated for 4 days with 40 mM K+ showed a reduction in maximum ligand binding with no change in affinity. Control and experimental Bmax values were 70.7 +/- 6.4 and 42.2 +/- 4.5 fmol/mg protein, respectively, and control and experimental KD values were 70.2 +/- 7.4 and 68.6 +/- 7.4 x 10(-12) M. The effect of chronic depolarization was time-dependent, reversible, and without effect on cellular protein content. Reduction in 45Ca2+ uptake following chronic depolarization correlated well with the reduction in [3H]PN200-110 binding. The calcium ionophore A23187, 10(-6) M for 24 h, also decreased the binding site density. The calcium channel antagonist D600 had no effect alone on [3H]PN200-110 binding; however, D600 blocked the down-regulation of calcium channels induced by chronic depolarization. The mechanism for Ca2+ channel down-regulation may involve calcium entry, since the effect was blocked by D600 and mimicked by the calcium ionophore A23187. Chronic depolarization with either elevated K+ or veratridine, or chronic treatment with A23187 had no effect on calcium channels in rat neonatal ventricular myocytes, although these cells express functional channels of the 1,4-dihydropyridine-sensitive class.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号