首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shasmal M  Sengupta J 《PloS one》2012,7(2):e31742
Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.  相似文献   

3.
The structure of shikimate 5-dehydrogenase, the fourth enzyme in the shikimate biosynthesis pathway and a member of a large enzyme family without clear structural peer, reveals a novel topological fold for the substrate binding domain and, through homology modeling, expands the possibilities for antimicrobial and herbicide design.  相似文献   

4.
Peptidyl-tRNA hydrolase from Mycobacterium smegmatis is a single domain 21 kDa protein involved in the hydrolysis of prematurely produced peptidyl-tRNAs to ensure the viability of cells in bacteria, thus making it a potentially important drug target. In order to aid the development of potent drugs for controlling bacterial infections, the three-dimensional structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis has been determined. The protein adopts a compact α/β globular fold with a twisted β-sheet surrounded by α-helices. The functionally important C-terminal stretch has been unambiguously modeled for the first time in the unliganded structure of peptidyl-tRNA hydrolase. The segment, Gly138 - Val150 is mobile because it lacks significant interactions with the rest of the protein molecule. This conformational flexibility is reflected through different values of distances between a reference atom Ala147 Cα of the segment Gly138 - Val150 to Gly114 Cα from another segment from opposite side of the substrate binding channel in Mycobacterium smegmatis (7.8 Ǻ), Mycobacterium tuberculosis (9.5 Ǻ) and Escherichia coli (11.8 Ǻ). Similarly, the conformation of loop Gly109 - Gly117 with respect to another loop Asp95 - Asp100 also shows variability of the substrate binding cleft as the distance between Asp98 Oδ2 to Gly113 Cα in Mycobacterium smegmatis is 4.5 Ǻ while the corresponding distances in Mycobacterium tuberculosis and Escherichia coli are 3.1 Ǻ and 6.7 Ǻ respectively. The hydrogen bonded interactions between Asn116, His22 and Asp95 indicate a stereochemically favorable arrangement of these residues for catalytic action.  相似文献   

5.
NMR spectroscopy is one of the most powerful tools for the characterization of biomolecular systems. A unique aspect of NMR is its capacity to provide an integrated insight into both the structure and intrinsic dynamics of biomolecules. In addition, NMR can provide site-resolved information about the conformation entropy of binding, as well as about energetically excited conformational states. Recent advances have enabled the application of NMR for the characterization of supramolecular systems. A summary of mechanisms underpinning protein activity regulation revealed by the application of NMR spectroscopy in a number of biological systems studied in the lab is provided.  相似文献   

6.
The first structure of a P450 to an atomic resolution of 1.06 A has been solved for CYP121 from Mycobacterium tuberculosis. A comparison with P450 EryF (CYP107A1) reveals a remarkable overall similarity in fold with major differences residing in active site structural elements. The high resolution obtained allows visualization of several unusual aspects. The heme cofactor is bound in two distinct conformations while being notably kinked in one pyrrole group due to close interaction with the proline residue (Pro(346)) immediately following the heme iron-ligating cysteine (Cys(345)). The active site is remarkably rigid in comparison with the remainder of the structure, notwithstanding the large cavity volume of 1350 A(3). The region immediately surrounding the distal water ligand is remarkable in several aspects. Unlike other bacterial P450s, the I helix shows no deformation, similar to mammalian CYP2C5. In addition, the positively charged Arg(386) is located immediately above the heme plane, dominating the local structure. Putative proton relay pathways from protein surface to heme (converging at Ser(279)) are identified. Most interestingly, the electron density indicates weak binding of a dioxygen molecule to the P450. This structure provides a basis for rational design of putative antimycobacterial agents.  相似文献   

7.
Glucose-6-phosphate isomerase catalyzes the reversible aldose-ketose isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate in glycolysis and gluconeogenesis, and in the recycling of hexose-6-phosphate in the pentose phosphate pathway. The unicellular protozoans, Trypanosoma brucei, T. cruzi and Leishmania spp., of the order Kinetoplastida are important human parasites responsible for African sleeping sickness, Chagas' disease and leishmaniases, respectively. In these parasites, glycolysis is an important (and in some cases the only) metabolic pathway for ATP supply. The first seven of the 10 enzymes that participate in glycolysis, as well as an important fraction of the enzymes of the pentose phosphate pathway, are compartmentalized in peroxisome-like organelles called glycosomes. The dependence of the parasites on glycolysis, the importance of the pentose phosphate pathway in defense against oxidative stress, and the unique compartmentalization of these pathways, point to the enzymes contained in the glycosome as potential targets for drug design. The present report describes the first crystallographic structure of a parasite (Leishmania mexicana) glucose-6-phosphate isomerase. A comparison of the atomic structure of L. mexicana, human and other mammalian PGIs, which highlights unique features of the parasite's enzyme, is presented.  相似文献   

8.
9.
Proteins are often made in more than one form, with alternate versions sometimes residing in different cellular compartments than the primary species. The mammalian prion protein (PrP), a cell surface GPI-anchored protein, is a particularly noteworthy example for which minor cytosolic and transmembrane forms have been implicated in disease pathogenesis. To study these minor species, we used a selective labeling strategy in which spatially restricted expression of a biotinylating enzyme was combined with asymmetric engineering of the cognate acceptor sequence into PrP. Using this method, we could show that even wild-type PrP generates small amounts of the (Ctm)PrP transmembrane form. Selective detection of (Ctm)PrP allowed us to reveal its N-terminal processing, long half-life, residence in both intracellular and cell surface locations, and eventual degradation in the lysosome. Surprisingly, some human disease-causing mutants in PrP selectively stabilized (Ctm)PrP, revealing a previously unanticipated mechanism of (Ctm)PrP up-regulation that may contribute to disease. Thus, spatiotemporal tagging has uncovered novel aspects of normal and mutant PrP metabolism and should be readily applicable to the analysis of minor topologic isoforms of other proteins.  相似文献   

10.
We report the structure of a strictly mitochondrial human synthetase, namely tyrosyl-tRNA synthetase (mt-TyrRS), in complex with an adenylate analog at 2.2 A resolution. The structure is that of an active enzyme deprived of the C-terminal S4-like domain and resembles eubacterial TyrRSs with a canonical tyrosine-binding pocket and adenylate-binding residues typical of class I synthetases. Two bulges at the enzyme surface, not seen in eubacterial TyrRSs, correspond to conserved sequences in mt-TyrRSs. The synthetase electrostatic surface potential differs from that of other TyrRSs, including the human cytoplasmic homolog and the mitochondrial one from Neurospora crassa. The homodimeric human mt-TyrRS shows an asymmetry propagating from the dimer interface toward the two catalytic sites and extremities of each subunit. Mutagenesis of the catalytic domain reveals functional importance of Ser200 in line with an involvement of A73 rather than N1-N72 in tyrosine identity.  相似文献   

11.
<正>Dear Editor,Coxsackievirus A16(CV A16)and enterovirus 71(EV71)are currently the two primary causative agents of handfoot-and-mouth disease(HFMD)(Solomon et al.,2010;Mao et al.,2014),threatening health of children worldwide.They both belong to the Enterovirus genus of the  相似文献   

12.
Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing.  相似文献   

13.
The crystal structure of a highly acidic neurotoxin from the scorpion Buthus tamulus has been determined at 2.2A resolution. The amino acid sequence determination shows that the polypeptide chain has 64 amino acid residues. The pI measurement gave a value of 4.3 which is one of the lowest pI values reported so far for a scorpion toxin. As observed in other alpha-toxins, it contains four disulphide bridges, Cys12-Cys63, Cys16-Cys36, Cys22-Cys46, and Cys26-Cys48. The crystal structure reveals the presence of two crystallographically independent molecules in the asymmetric unit. The conformations of two molecules are identical with an r.m.s. value of 0.3A for their C(alpha) tracings. The overall fold of the toxin is very similar to other scorpion alpha-toxins. It is a betaalphabetabeta protein. The beta-sheet involves residues Glu2-Ile6 (strand beta1), Asp32-Trp39 (strand beta3) and Val45-Val55 (strand beta4). The single alpha-helix formed is by residues Asn19-Asp28 (alpha2). The structure shows a trans peptide bond between residues 9 and 10 in the five-membered reverse turn Asp8-Cys12. This suggests that this toxin belongs to classical alpha-toxin subfamily. The surface features of the present toxin are highly characteristic, the first (A-site) has residues, Phe18, Trp38 and Trp39 that protrude outwardly presumably to interact with its receptor. There is another novel face (N-site) of this neurotoxin that contains several negatively charged residues such as, Glu2, Asp3, Asp32, Glu49 and Asp50 which are clustered in a small region of the toxin structure. On yet another face (P-site) in a triangular arrangement, with respect to the above two faces there are several positively charged residues, Arg58, Lys62 and Arg64 that also protrude outwardly for a potentially potent interaction with other molecules. This toxin with three strong features appears to be one of the most toxic molecules reported so far. In this sense, it may be a new subclass of neurotoxins with the largest number of hot spots.  相似文献   

14.
The Bacillus subtilis YycFG two-component signal transduction system is essential for cell viability, and the YycH protein is part of the regulatory circuit that controls its activity. The crystal structure of YycH was solved by two-wavelength selenium anomalous dispersion data, and was refined using 2.3 A data to an R-factor of 25.2%. The molecule is made up of three domains, and has a novel three-dimensional structure. The N-terminal domain features a calcium binding site and the central domain contains two conserved loop regions.  相似文献   

15.
The cDNA for p22HBP has been cloned from human and mouse, and the protein expressed, purified, and characterized. Both mouse and human proteins bind heme and porphyrins with micromolar K(d)s, are highly homologous, monomeric, and soluble, and have a cytoplasmic location. The proteins bind metalloporphyrins, free porphyrins, and N-methylprotoporphyrin with similar affinities, and mutations of a selected set of putative metal ligating residues did not have any significant effect on the measured K(d)s. That the presence or absence of metal in the porphyrin has no effect on the binding constants and the observation that the EPR signal for heme does not change upon binding to the protein strongly suggest that p22HBP is a generic tetrapyrrole-binding protein rather than a dedicated heme-binding protein. A role for p22HBP in cellular porphyrin metabolism is discussed.  相似文献   

16.
 The quality of cryosections prepared from high pressure frozen bovine articular cartilage has been recently evaluated by systematic electron diffraction analysis, and vitrification found to be zone-dependent. The lower radial layer was optimally frozen throughout the entire section thickness (150 μm), whereas in the upper radial, transitional and superficial layers this was achieved down to a depth of only approximately 5–50 μm. These differences were found to correlate proportionally with proteoglycan concentration and inversely with water content. In the current investigation, extracellular matrix ultrastructure was examined in high pressure frozen material (derived from the lower radial zone of young adult bovine articular cartilage), by both cryoelectron microscopy of cryosections and by conventional transmission electron microscopy of freeze-substituted and embedded samples. Several novel features were revealed, in particular, the existence of a fine filamentous network; this consisted of elements 10–15 nm in diameter and with a regular cross-banded structure similar to that characterising collagen fibrils. These filaments were encountered throughout the entire extracellular space, even within the pericellular region, which is generally believed to be free of filamentous or fibrillar components. The proteoglycan-rich interfibrillar/filamentous space manifested a fine granular appearance, there being no evidence of the reticular network previously seen in suboptimally frozen material. Accepted: 28 June 1996  相似文献   

17.
In cell senescence, cultured cells cease proliferating and acquire aberrant gene expression patterns. MicroRNAs (miRNAs) modulate gene expression through translational repression or mRNA degradation and have been implicated in senescence. We used deep sequencing to carry out a comprehensive survey of miRNA expression and involvement in cell senescence. Informatic analysis of small RNA sequence datasets from young and senescent IMR90 human fibroblasts identifies many miRNAs that are regulated (either up or down) with cell senescence. Comparison with mRNA expression profiles reveals potential mRNA targets of these senescence-regulated miRNAs. The target mRNAs are enriched for genes involved in biological processes associated with cell senescence. This result greatly extends existing information on the role of miRNAs in cell senescence and is consistent with miRNAs having a causal role in the process.  相似文献   

18.
19.
Interferon-stimulated gene 56 (ISG56) family members play important roles in blocking viral replication and regulating cellular functions, however, their underlying molecular mechanisms are largely unclear. Here, we present the crystal structure of ISG54, an ISG56 family protein with a novel RNA-binding structure. The structure shows that ISG54 monomers have 9 tetratricopeptide repeat-like motifs and associate to form domain-swapped dimers. The C-terminal part folds into a super-helical structure and has an extensively positively-charged nucleotide-binding channel on its inner surface. EMSA results show that ISG54 binds specifically to some RNAs, such as adenylate uridylate (AU)-rich RNAs, with or without 5′ triphosphorylation. Mutagenesis and functional studies show that this RNA-binding ability is important to its antiviral activity. Our results suggest a new mechanism underlying the antiviral activity of this interferon-inducible gene 56 family member.  相似文献   

20.
The role of cbiK, a gene found encoded within the Salmonella typhimurium cob operon, has been investigated by studying its in vivo function in Escherichia coli. First, it was found that cbiK is not required for cobalamin biosynthesis in the presence of a genomic cysG gene (encoding siroheme synthase) background. Second, in the absence of a genomic cysG gene, cobalamin biosynthesis in E. coli was found to be dependent upon the presence of cobA(P. denitrificans) (encoding the uroporphyrinogen III methyltransferase from Pseudomonas denitrificans) and cbiK. Third, complementation of the cysteine auxotrophy of the E. coli cysG deletion strain 302delta a could be attained by the combined presence of cobA(P. denitrificans) and the S. typhimurium cbiK gene. Collectively these results suggest that CbiK can function in fashion analogous to that of the N-terminal domain of CysG (CysG(B)), which catalyzes the final two steps in siroheme synthesis, i.e., NAD-dependent dehydrogenation of precorrin-2 to sirohydrochlorin and ferrochelation. Thus, phenotypically CysG(B) and CbiK have very similar properties in vivo, although the two proteins do not have any sequence similarity. In comparison to CysG, CbiK appears to have a greater affinity for Co2+ than for Fe2+, and it is likely that cbiK encodes an enzyme whose primary role is that of a cobalt chelatase in corrin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号