首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I Pajunen 《Cryobiology》1992,29(3):414-421
Heart rate in hibernating garden dormice, Eliomys quercinus, was studied by means of permanently implanted electrodes; ambient temperatures (TA's) were maintained at 0, 4, 6.5, and 9 degrees C during the 6-month test period in each winter study. The animals were kept under constant conditions in darkness and without food or water. Heart rate remained at a low level during deep hibernation at all TA's studied. There were no differences in midwinter values between the TA's of 6.5 and 9 degrees C: the means were 9-12 beats/min during apnea. Heart rate thus differs from other hibernation parameters studied simultaneously, which were strongly TA dependent. However, the optimal TA of 4 degrees C could be distinguished and heart rate was significantly lower, 8-10 beats/min. At 0 degree C the values were slightly higher: 12-13 beats/min. The TA of 0 degree C was exceptional for all parameters studied. At the beginning of the hibernation season was a transition period with elevated heart rate values. Respiratory-related heart-rate changes appeared during periodic respiration, heart rate being significantly higher during respiratory periods at all TA's. At 0, 6.5, and 9 degrees C tachycardia occurred also during apnea, very close to the respiratory period. There are responses that are comparable to hypoxic environmental conditions during hibernation, diving, and pregnancy and under high-altitude conditions. Parallel adaptations appear in heart rate and respiration, i.e., bradycardia and periodic respiration. In conclusion, heart-rate values were low during deep hibernation, and compared with other parameters measured at different TA's heart rate is maintained inside narrow limits during deep hibernation.  相似文献   

2.
Heart rate (HR) of ground squirrel C. undulatus was studied in dependence of season, level of activity, physiological state and air temperature (T). In summer HR varies from 110-130 beat/min in sleep up to 420 beat/min at flight from danger. During winter hibernation HP was minimal (3-5 beat/min) at T 1-4 degrees C, the increase in T induced the growth of HP in correspondence to the Arrenius van't Hoff law. The temperature of the body in hibernation exceeded T on 1.5-3 degrees C. The time of getting off the hibernation increased with the decrease in T (6-7 hours at -1 degree C and 2.5-3 hours at +18 degrees C). At phase of increased thermogenesis during arousal heart temperature exceeded rectal one on 10-12 degrees C and heart rate run up to 360-420 beat/min i.e. 2-3 time higher than in active state. The decrease in T stimulated the increase in HP up to 3.8 in winter and 5.3 beat/min/degree C in summer. The highest values of Q10 for HP were revealed at the beginning of hibernation (15-20) and at the beginning of arousal (6-7), in other periods Q10 was similar to the normal biological values (2-2.5). Thus, at the beginning of transitional periods changes of HP were determined mainly by endogenic mechanisms that inhibited myocardium at the beginning of hibernation and activated in arousal. Some mechanisms of coordination between activities of heart and other systems of organism are considered. The features of hit exchange providing the hibernation in wide range of T are discussed.  相似文献   

3.
Reproductive performance and gonadal function were studied in two groups of woodchucks containing 16 females and 8-9 males each. The control group was maintained indoors under conditions that do not induce hibernation, including fluctuating temperature of 6-12 degrees C, ad libitum feed, and exposure to natural and incandescent light. The hibernaculum-housed group was, in addition, provided conditions that do induce hibernation, including temperature reduced to 5.6 +/- 1.7 degrees C, no food, and no light from 19 November to 21 February. Hibernaculum housing caused 67% of males and 94% of females to hibernate with reduced body temperature for significant periods of times. Compared to control conditions, hibernaculum housing caused (p less than 0.05) a delay in testis recrudescence, a reduction in mean peak testis size (1.8 vs. 3.0 cc) and its mean date of occurrence (14 March vs. 15 February), a reduction in mean testosterone concentrations in February, and a reduced incidence of fertile matings (22 vs. 88%). In females, hibernation resulted (p less than 0.05) in a greater loss in body weight and a reduced pregnancy rate (31 vs. 82%), which was related to post-hibernation body weights that, in turn, were related to prehibernation body weights. Among hibernaculum-housed females, the pregnancy rate was lower in smaller females (0%; 2.0 +/- 0.1 kg) than in the larger ones (63%; 2.9 +/- 0.1 kg). The results demonstrate that the experimental imposition of hibernation-inducing conditions for 3 mo prior to the expected breeding season can alter subsequent reproductive performance in laboratory-maintained woodchucks, whereas a reproductive rate of 88% can be obtained in animals prevented from hibernating during their first year in captivity.  相似文献   

4.
The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (T(b)) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal T(b) of both long-beaks was 31 degrees C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30-32 degrees C) and to platypus (32 degrees C), suggesting that this is characteristic of normothermic monotremes. T(b) cycled daily, usually over 2-4 degrees C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low T(b) in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely.  相似文献   

5.
Tanaka H 《Zoological science》2006,23(11):991-997
This study examined seasonal changes in body weight, hibernation period, and body temperature of the Japanese badger (Meles meles anakuma) from 1997 to 2001. Adult badgers showed seasonal changes in body weight. Between mid-December and February, badger activity almost ceased, as the animals remained in their setts most of the time. Adult male badgers were solitary hibernators; adult females hibernated either alone or with their cubs and/or yearlings. The total hibernation period of Japanese badgers ranged from 42 to 80 days, with a mean length of 60.1 days. Japanese badgers did not always spend the winters in the same sett, although they seldom changed setts during hibernation. I equipped a male cub with an intraperitoneally implanted data logger to record its body temperature between November and April, while the cub hibernated with its mother. Over the winter, the body weight of the cub decreased from 5.3 kg to 3.6 kg, a weight loss of 32.1%, and its body temperature ranged from 32.0 to 39.8 degrees C. The mean monthly body temperature was 35.1 degrees C in December, 34.8 degrees C in January, 35.9 degrees C in February, 37.1 degrees C in March, and 37.4 degrees C in April, so the monthly decrease in body temperature of this cub was not great. The results indicate that during hibernation, when body temperature is low, there is likely considerable economy of energy and a reduced demand for adipose reserves.  相似文献   

6.
1. Arterial blood was sampled at 15 min-intervals in European hamsters Cricetus cricetus fitted with indwelling catheters, from deep hibernation to full arousal. Temperature-corrected pH and PCO2, respectively pH* and P*CO2, were directly measured at 37 degrees C. 2. Deep hibernation corresponded to a respiratory acidosis: pH* = 7.01 +/- 0.01 (mean +/- SE), P*CO2 = 160 +/- 4 Torr (n = 9 animals). 3. Three periods could be distinguished in the arousal: (i) a period of hyperventilation (28 +/- 5 min), in which P*CO2 was reduced to 79 +/- 4 Torr, while cheek pouch temperature increased only by 0.9 +/- 0.2 degrees C; (ii) a period of metabolic acidification by lactate accumulation (84 +/- 6 min), corresponding to the period of peak thermogenesis; (iii) a progressive return to euthermic conditions (104 +/- 10 min), by simultaneous respiratory and metabolic alkalinization. 4. Over 60% of the blood CO2 stores accumulated at the beginning of the hibernation bout were released by hyperventilation during the first period, prior to the full development of thermogenesis. This is in agreement with the hypothesis of an inhibitory role of the respiratory acidosis in hibernation.  相似文献   

7.
The objective was to determine the effect of moderate changes in ambient temperature (TA) on breathing and body temperature in ponies chronically exposed to a TA of 21 degrees C in the summer and 5 degrees C in the winter. Normal (n = 6) and chronic carotid body-denervated (n = 6, 1-2 yr) ponies were studied during 1) winter months over 3-4 days at 5 (control TA) and 23 degrees C and 2) summer months over 2-4 days at 21 (control TA), 30, and 12 degrees C. Neither rectal nor arterial temperature changed with any alteration of TA (P greater than 0.10). Skin temperature (Tsk) always changed by 2-4 degrees C in the same direction as changes in TA (P less than 0.01), and Tsk was the only variable that differed between summer and winter control TA. While breathing room air 24-48 h after TA was altered, pulmonary ventilation (VE) and breathing frequency (f) were approximately 100 and 300%, respectively, above control with elevated TA and approximately 25-50% below control with reduced TA (P less than 0.01). Changes in f were closely related to changes in Tsk. Tidal volume (VT) changed inversely with changes in TA. Generally, while breathing room air, arterial PCO2 (Paco2) did not change from control during the first 48 h of altered TA. In studies when inspired CO2 was elevated VT increased by the same amount at all TA; f increased at low and control TA but decreased at elevated TA; and VE and Paco2 both increased relatively less at elevated TA, but the VE-Paco2 slope was independent of TA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

9.
Under laboratory conditions, rock elephant shrews, Elephantulus myurus, use daily torpor under both short and long photoperiod acclimation. However, use of heterothermy often differs under field and laboratory conditions. We investigated the use of torpor in free-ranging elephant shrews from May 2001 to May 2002. The elephant shrews were capable of daily torpor throughout the year, with torpor most prevalent during winter. We recorded two torpor bouts during early summer (November). We recorded a total of 467 torpor bouts during the year. The mean torpor minimum body temperature (Tbmin) for the whole year was 15.3 degrees +/-4.4 degrees C, and the mean bout length was 8.6+/-3.5 h. These values were in the range expected for daily heterotherms. However, there was some marginal overlap with hibernation characteristics; a few torpor bouts were longer than 24 h in duration, and Tbmin decreased below 10 degrees C. Torpor was highly correlated with low ambient temperature and photoperiod. Torpor was also correlated with invertebrate abundance after controlling for photoperiod effects. During the year in which this study was conducted, the rainfall was 14% below long-term average. Historical rainfall records show that summer rainfall during strong El Nino years is up to 40% below the long-term average. During these drought years, the frequency of summer torpor may be higher, highlighting the need for long-term physiological data in free-ranging animals.  相似文献   

10.
Helge Walhovd 《Oecologia》1979,40(2):141-153
Summary Thermal properties of hibernacula and sequences of arousals have been studied in four adult hedgehogs for seven months starting in October. Departures and entries to the nesting chamber were continuously monitored together with ambient temperature and the temperature in the hibernacula.During the two first months of the experimental period nest departures were intermittently recorded, predominantly in the two females which also occasionally foraged. The longest periods spent continuously in the hibernaculum ranged from 129 to 178 days. The natural hibernation season for Danish hedgehogs was found to comprise the six months from October onwards when there is little shelter where hedgehogs normally roam.Ambient temperatures recorded were —11 to +13° C being subzero for half the total time measured. The nest temperatures generally were higher, and above 0° C during 78–99% of total time, most commonly ranging from 0° to 4° C and thus reflecting deep hibernation.Between December and May spontaneous increases in nest temperatures amounting to 7–26° C (average 18° C) and bringing these temperatures to 10–29.5° C were recorded in 58 cases. Fiftyfour arousals did not involve departure from the hibernaculum (partial arousals). In the remaining cases (full arousals) the preceding rewarming lasted 4 1/2–6 1/2 h and nest departures amounted to 10,2 and 5 min in one female hedgehog and 90 min in another.The hedgehogs showed 12–18 arousals, the mean duration of which was 34–44 h. The high energy expenditure associated with arousals however, was found to last on average 21 h during each arousal. It is hypothesized that the body temperature during arousals chiefly was below 35–37° C.The time between arousals was 3–15 days. Periods in hibernation averaged 7–8 days in the females and 9–10 days in the heavier males, being generally longest in January-February. Neither arousals nor re-entries into deep hibernation occurred at any particular time of the day. It is suggested that for undisturbed hedgehogs arousals are induced and controlled by endogenous factors. In conclusion it is stressed that future studies on hibernation should recognize the importance of individual variability in the response pattern and focus interest on the endogenous factors which govern this important process.  相似文献   

11.
Hibernation and daily torpor are physiological strategies to cope with energetic challenges that occur in many mammalian and avian taxa, but no reliable information exists about daily torpor or hibernation for any xenarthran. Our objective was to determine whether the pichi (Zaedyus pichiy), a small armadillo (Xenarthra, Dasypodidae) that inhabits arid and semi-arid habitats in central and southern Argentina and Chile, enters shallow daily torpor or prolonged deep hibernation during winter when environmental temperature and food availability are low. We studied body temperature changes during winter in semi-captive pichis by means of temperature dataloggers implanted subcutaneously. All individuals entered hibernation, characterized by torpor events of 75+/-20 h during which the subcutaneous temperature (T(sc)) decreased to 14.6+/-2.1 degrees C. These events were interrupted by periods of euthermia of 44+/-38 h with a T(sc) of 29.1+/-0.7 degrees C. After the hibernation season, daily torpor bouts of 4 to 6 h occurred irregularly, with T(sc) dropping to as low as 24.5 degrees C. We conclude that the pichi is a true hibernator and can enter daily torpor outside of the hibernation season.  相似文献   

12.
Decrease of ambient temperature (Ta) leads to the increase of the heart rate (HR) in active ground squirrels C. undulatus by 5.3/min/1 degree C in summer and by 3.8/min/1 degree C in winter. In a hibernation state, the dependence of the HR on Ta was in a good agreement with equation HT = 2.53.exp.(0.1.Ta). On entering into hibernation and on arousal, the HR change outruns the corresponding body temperature (Tb) change by 1.5-2 hours. A maximum HR level (up to 400/min and more) was registered on arousal when Tb reached 17-20 degrees C. A minimal HR level (4-5/min) was observed during hibernation at Ta 2-5 degrees C. The maximum Ta, at witch C. undulatus was hibernating, reached 23-24 degrees C, the HR being 23-25/min.  相似文献   

13.
Fritz  Geiser  Linda S.  Broome 《Journal of Zoology》1991,223(4):593-602
Mountain pygmy possums Burramys parvus (40 g) disappear from their Mt. Kosciusko boulder fields from May to October/November and it is assumed that they hibernate during this time. However, laboratory studies did not observe the characteristic hibernation pattern of placentals, which, throughout the hibernation season, show long bouts of torpor (several days to weeks) that are interrupted by short (< 1 day) normothermic periods. We investigated the pattern of hibernation in juvenile (N = 8) and adult (N = 8) male and female B. parvus in the laboratory at an air temperature that was similar to that in the field during winter. Adults commenced hibernation earlier and hibernated longer (about seven months) than juveniles (about five months). All adult individuals hibernated whereas only six of the eight juveniles did so. Hibernating animals showed distinct seasonal changes in the duration of torpor bouts. Torpor bouts were short (about five days) at the beginning, long (12–20 days) during the middle, and short again at the end of the hibernation season. Normothermic periods were usually shorter than one day. The pattern of the seasonal change of torpor bout duration differed between juveniles and adults and between sexes. Body temperature during mid-hibernation was regulated at about 2 ° c in females and 3 ° C in males and the metabolic rate was similar to that of hibernating placentals.  相似文献   

14.
During hibernation at ambient temperatures (T(a)) above 0 degrees C, rodents typically maintain body temperature (T(b)) approximately 1 degrees C above T(a), reduce metabolic rate, and suspend or substantially reduce many physiological functions. We tested the extent to which the presence of an insulative pelage affects hibernation. T(b) was recorded telemetrically in golden-mantled ground squirrels (Spermophilus lateralis) housed at a T(a) of 5 degrees C; food intake and body mass were measured at regular intervals throughout the hibernation season and after the terminal arousal. Animals were subjected to complete removal of the dorsal fur or a control procedure after they had been in hibernation for 3-4 wk. Shaved squirrels continued to hibernate with little or no change in minimum T(b), bout duration, duration of periodic normothermic bouts, and food intake during normothermia. Rates of rewarming from torpor were, however, significantly slower in shaved squirrels, and rates of body mass loss were significantly higher, indicating increased depletion of white adipose energy stores. An insulative pelage evidently conserves energy over the course of the hibernation season by decreasing body heat loss and reducing energy expenditure during periodic arousals from torpor and subsequent intervals of normothermia. This prolongs the hibernation season by several weeks, thereby eliminating the debilitating consequences associated with premature emergence from hibernation.  相似文献   

15.
The jerboa (Jaculus orientalis) has been described in the past as a hibernator, but no reliable data exist on the daily and seasonal rhythmicity of body temperature (T b). In this study, T b patterns were determined in different groups of jerboas (isolated males and females, castrated males and grouped animals) maintained in captivity during autumn and winter, and submitted to natural variations of light and ambient temperature (T a). T b and T a variations were recorded with surgically implanted iButton temperature loggers at 30-min intervals for two consecutive years. About half (6/13) of isolated female jerboas hibernated with a T b < 33°C, with hibernation bouts interspersed with short periods of normothermy from November to February. Hibernation bout durations were longer (4–5 days) than those of normothermia phases (1–4 days). During hibernation, the minimum T b was low (T bmin ~10.7°C). In contrast, one of the 12 isolated males showed short hibernation bouts of ca. 2 days late in the hibernation season, February–March. The males had T bmin values of 15.1°C. In contrast to predictions, no castrated males hibernated. When jerboas were grouped, females and males exhibited concomitant torpor bouts. In males, the longest bouts were observed during the late hibernation season. These data suggest complex regulation of hibernation in jerboas.  相似文献   

16.
Testis size and spermatogenesis were monitored serially in individual golden-mantled ground squirrels before, during, and after the hibernation season. During hibernation, animals spent 81% of days in torpor at body temperatures of 3-4 degrees C. Torpor bouts of 6 days duration were interspersed with brief arousals from torpor during which animals were normothermic. In the 5 mo between December (when animals entered hibernation) and April (when torpor was spontaneously terminated), the estimated mass of testes increased gradually from 500 to 1100 mg, but spermatogenesis did not advance beyond pachytene spermatocytes, which were present before hibernation began. In contrast, during the month after torpor was terminated, testes increased rapidly to 3500 mg and after 31 days, spermatozoa were found in the epididymides. We suggest that the limited testis growth that occurred during the hibernation season was restricted to intervals during which squirrels were aroused from torpor. The major portion of gonadal growth and spermatogenesis in the laboratory, and presumably in the field, occurs after ground squirrels have regained the normothermic state. Since males are reproductively mature when first trapped in spring, these findings suggest that males are normothermic for several weeks before they emerge from their hibernacula in the spring.  相似文献   

17.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

18.
We undertook a study to determine presence of circadian rhythms during woodchuck hibernation using continuously monitored body temperatures. Males had shorter torpor and longer euthermic periods than females. Circular statistics revealed a significant mean vector for males entering into torpor (10:21 h), but not for females. No significant mean vector was found for male or female arousal from torpor. A contingency test was applied to the torpor bout durations. All 7 males tested had significant τ’s between 24 and 26 h, while 6 of the 13 females tested had significant τ’s with a range of 22–27 h. These results implicate a free-running circadian clock during torpor bouts. Overall, the data support the existence of biological rhythms during hibernation in woodchucks, especially for males during arousals. Since entries into torpor appear to be synchronized for males, arousal periods may be used to resynchronize their circadian system. The persistence of biological rhythms during hibernation may help to insure successful mating in the spring after emergence.  相似文献   

19.
The patterns of heterothermy were measured in Lesser Hedgehog Tenrecs, Echinops telfairi, under semi-natural conditions in an outdoor enclosure during the austral mid-winter in southwestern Madagascar. The animals were implanted with miniaturized body temperature (Tb) loggers (iButtons) that measured body temperature every 42 min for 2 months (May and June). The tenrecs entered daily torpor on all 60 consecutive days of measurement, that is, on 100% of animal days, with body temperature closely tracking ambient temperature (Ta) during the ambient heating phase. The mean minimum daily Tb of the tenrecs was 18.44 +/- 0.50 degrees C (n = 174, N = 3), and never exceeded 25 degrees C whereas, apart from a few hibernation bouts in one animal, the mean maximum daily Tb was 30.73 +/- 0.15 degrees C (n = 167, N = 3). Thus during winter, tenrecs display the lowest normothermic Tb of all placental mammals. E. telfairi showed afternoon and early evening arousals, but entered torpor before midnight and remained in torpor for 12-18 h each day. One animal hibernated on two occasions for periods of 2-4 days. We consider E. telfairi to be a protoendotherm, and discuss the relevance and potential of these data for testing models on the evolution of endothermy.  相似文献   

20.
Surface temperatures (Ts) of eight 13-lined ground squirrels and seven yellow-bellied marmots were measured during arousal from hibernation using infrared thermography (IRT) and recorded on videotape. Animals aroused normally in 5 degrees C cold rooms. Body temperatures were recorded during arousal using both cheek pouch and interscapular temperature probes. Warming rate in arousal was exponential. Mean mass specific warming rates show the squirrels warm faster (69.76 degrees C/h/kg) than the marmots (4.49 degrees C/h/kg). Surface temperatures (Ts) for 11 regions were measured every few minutes during arousal. The smaller ground squirrel shows the ability to perfuse distal regions without compromising rise in deep body temperature (Tb). All squirrel Ts's remained low as Tb rose to 18 degrees C, at which point, eyes opened, squirrels became more active and all Ts's rose parallel to Tb. Marmot Ts remained low as Tb rose initially. Each marmot showed a plateau phase where Tb remained constant (mean Tb 20.3+/-1.0 degrees C, duration 9.4+/-4.1 min) during which time all Ts's rose, and then remained relatively constant as Tb again began to rise. An anterior to posterior Ts gradient was evident in the ground squirrel, both body and feet. This gradient was only evident in the feet of the marmots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号