首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Summary Intracellular recordings were made from the soma of the metathoracic common inhibitory neuron of the locustsSchistocerca andChortoicetes. The soma is passively invaded by a spike of 2–5 mV in amplitude. The response of the common inhibitor to a variety of different inputs was studied. Tests for coupling between the common inhibitory and excitatory motoneurons to the same or antagonistic muscles were made by simultaneous recordings from pairs of neuron somata. No low resistance or synaptically mediated coupling was found. The somata of the two common inhibitory neurons which supply muscles on opposite sides of the body lie together on the ventral surface of the ganglion on the mid-line (Fig. 6). They are not coupled in any way. Cobalt chloride injected into the common inhibitor has shown it to have an extensive and complex dendritic tree confined to the ipsilateral half of the ganglion (Fig. 8). A single branch extends into the mesothoracic ganglion. There are differences in the branching patterns of the dendrites in different animals (Fig. 10).Beit Memorial Research Fellow.  相似文献   

2.
The pharmacology of the direct central connections between the fast extensor and flexor motor neurones of a locust (Schistocerca gregaria) hind leg was studied. A spike in the fast extensor produces an EPSP in the flexor motor neurones. Glutamate depolarized the flexor motor neurones when injected into the neuropil. Quisqualate, but not by kainate or NMDA, also depolarized the flexor motor neurones. The fast extensor was also depolarized by glutamate, and also by kainate, but not by quisqualate, AMPA or NMDA. The glutamate response in the flexor motor neurones and the EPSP evoked by a spike in FETi both had similar reversal potentials. The FETi-evoked EPSP was blocked by bath application of the glutamate antagonist glutamic acid diethyl ester. The responses of extrasynaptic somata receptors to glutamate were compared to the neuropil responses. Glutamate usually hyperpolarized the somata of FETi and the flexor motor neurones. The response of a flexor motor neurone to glutamate was abolished at potentials less negative than -90 mV. The results provide evidence for glutamate transmission at central synapses in the locust, and show that presumed synaptic receptors in the neuropil differ to the extrasynaptic soma response  相似文献   

3.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The soma location and peripheral connectivity of motoneurons in abdominal segments of the embryo and larva of the fruitfly, Drosophila melanogaster are described as an initial step in determining the mechanisms by which motoneurons make connections with their target muscles in a genetically accessible organism. Embryonic motoneuron somata were retrogradely labelled by application of the fluorescent dye, DiI, to the whole peripheral nerve or to its separate anterior or posterior fascicles in segments A5-A7 of late stage 15/early stage 16 embryos. This technique reveals a stereotyped, segmentally repeated population of 34 motoneurons per hemisegment, several of which can be individually identified from their soma position. The same set of motoneurons was revealed in third instar larvae of D. melanogaster by cobalt backfilling of abdominal peripheral nerves, although the positions of some of these neurons change during larval development. The peripheral connectivity and axon morphology of several of the abdominal motoneurons was determined by intracellular injection with Lucifer Yellow in stage 16 embryos. For the motoneurons with axons in the anterior fascicle there is no clear relationship between somata groupings and the muscle targets innervated: contrary to earlier claims, these motoneurons arborize over both ventral and dorsal muscles. Individual motoneurons possess a stereotyped pattern of terminal arborization.  相似文献   

5.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

6.
Summary The distribution patterns of serotonin-immunoreactive somata in the cerebral and subpharyngeal ganglion, and in the head and tail ganglia of the nerve cord of Lumbricus terrestris are described from whole-mount preparations. A small number of serotonin-immunoreactive neurons occurs in the cerebral ganglion, in contrast to the large population of serotonin-immunoreactive neurons that exists in all parts of the ventral nerve cord. From the arrangement of serotonin-immunoreactive somata in the subpharyngeal ganglion, we suggest that this ganglion arises from the fusion of two primordial ganglia. In head and tail ganglia, the distribution of serotonin-immunoreactive somata resembles that in midbody segments. Segmental variations in the pattern and number of serotonin-immunoreactive somata in the different body regions are discussed on the background of known developmental mechanisms that result in metameric neuronal populations in annelids and arthropods.Abbreviations CG1, CG2 cerebral soma group 1, 2 - CNS central nervous system - GINs giant interneurons - 5-HT 5-hydroxytryptamine, serotonin - 5-HTi 5-HT-immunoreactive - N side nerve - SG19 subpharyngeal soma group 1–9 - SN segmental nerve  相似文献   

7.
Summary Two metathoracic flight motoneurons of the locustChortoicetes terminifera have been stained by injection of cobalt. The motoneurons innervate the tergosternal (hindwing elevator) muscle 113 and the first basalar (hindwing depressor) muscle 127. The somata of both are on the ventral surface of the ganglion (Fig. 1), and their axons in the ipsilateral nerve 3A. The main neuropilar segment and large medial dendrites of each follow parallel courses through the ganglion even though the two motoneurons subserve antagonistic functions (Fig. 3). Differences in the smaller dendrites add characteristic detail to each. The dendritic trees are complex and cover virtually all of the ipsilateral dorsal neuropile. No branches cross the mid-line so that electrotonic coupling is eliminated as a possible means of co-ordination of motoneurons of the two sides (Fig. 4). The general shape of the motoneurons is similar in different animals but there is variation in the number and extent of the small dendrites (Fig. 6).Beit Memorial Research Fellow.  相似文献   

8.
1. Intracellular recordings were obtained from the somata of identified abdominal postural motor neurons in lobster to examine their subthreshold and suprathreshold responses to tactile stimulation of the swimmeret. 2. Pressure stimulation of the swimmeret surface evoked abdominal extension by producing tonic spiking in the extensor excitors and the synergistic flexor inhibitor (f5) and hyperpolarizing responses in the extensor inhibitor and antagonistic flexor excitors. These responses often continued for several seconds following the termination of the stimulus. The receptive fields of these motor responses extended over most of the swimmeret surface. 3. More localized tactile stimulation of the swimmeret surface elicited EPSPs in f5 and the extensor excitors, and IPSPs in the flexor excitors. The amplitude of these synaptic potentials decreased as the stimulus intensity was reduced. 4. Stimulation of feathered hair (both sexes) and smooth hair (female only) sensilla produced responses characteristic of extension whereas bristly spines on the male accessory lobe excited only two flexor excitors without affecting any of the other postural motor neurons. 5. Summed synaptic responses recorded from the motor neurons differed in their amplitudes and latencies according to the type of mechanoreceptor stimulated-cuticular receptors, feathered hairs or smooth hairs. Stimulation of the swimmeret cuticle produced the strongest responses (shortest latency, largest amplitude), while feathered hair stimulation initiated the weakest responses (longest latency, smallest amplitude). 6. The relatively long latencies (greater than 35 ms) and the complex form of the EPSPs and IPSPs indicate the involvement of multisynaptic interneuronal pathways in the reflex arcs.  相似文献   

9.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

10.
The effect of octopamine on the fast extensor and the flexor tibiae motor neurones in the locust (Schistocerca gregaria) metathoracic ganglion, and also on synaptic transmission from the fast extensor to the flexor motor neurones, was examined. Bath application or ionophoresis of octopamine depolarized and increased the excitability of the flexor tibiae motor neurones. 1 mM octopamine reduced the amplitude of the fast extensor-evoked EPSP in the slow but not the fast flexor motor neurones, whereas 10 mM octopamine could reduce the EPSP amplitude in both. Octopamine broadened the fast extensor action potential and reduced the amplitude of the afterhyperpolarization, the modulation requiring feedback resulting from movement of the tibia. Octopamine also increased the frequency of synaptic inputs onto the tibial motor neurones, and could cause rhythmic activity in the flexor motor neurones, and reciprocal activity in flexor and extensor motor neurones. Octopamine also increased the frequency of spontaneous spiking in the octopaminergic dorsal unpaired median neurones. Repetitive stimulation of unidentified dorsal unpaired median neurones could mimic some of the effects of octopamine. However, no synaptic connections were found between dorsal unpaired median neurones and the tibial motor neurones. The diverse effects of octopamine support its role in mediating arousal.  相似文献   

11.
Various problems concerning the physiology of muscular units depend on the exact localization of motoneurons innervating antagonistically acting muscles. The present communication is focussed on the distribution of motoneurons innervating the gastrocnemius (GC) and tibialis anterior (TA) muscles. After injection of horseradish peroxidase (HRP) into these muscles and a survival time ensuring sufficient retrograde transport, the number of motoneurons, their segmental distribution, the mean area covered the labeled cells and the mean diameter of their somata were determined. After injections into the GC-muscle, 129 +/- 6 labeled perikarya were found, and following injections into the TA-muscle, 120 +/- 9 motoneurons were marked with HRP. The motoneurons of both muscles were distributed in spinal cord segments L4-5-6; however, the GC-neurons accumulated in segments L5-6 (approximately 94%) and the TA-neurons in L4-5 (approximately 95%). Although the motoneurons innervating both muscles were located in a rather similar area of the ventral column, i.e. its dorsolateral portion as judged from transverse sections, the GC-motoneurons were situated ventrolaterally to the TA-motoneurons. The measurement of the area of the somata and the mean soma diameter did not reveal any conspicuous differences between both pools of motoneurons. An unimodal distribution pattern of these parameters suggests a broad overlap in the size of alpha-, beta-, and gamma-motoneurons.  相似文献   

12.
Animal locomotion results from muscle contraction and relaxation cycles that are generated within the central nervous system and then are relayed to the periphery by motoneurons. Thus, motoneuron function is an essential element for understanding control of animal locomotion. This paper presents motoneuron input–output relationships, including impulse adaptation, in the medicinal leech. We found that although frequency-current graphs generated by passing 1-s current pulses in neuron somata were non-linear, peak and steady-state graphs of frequency against membrane potential were linear, with slopes of 5.2 and 2.9 Hz/mV, respectively. Systems analysis of impulse frequency adaptation revealed a static threshold nonlinearity at −43 mV (impulse threshold) and a single time constant (τ = 88 ms). This simple model accurately predicts motoneuron impulse frequency when tested by intracellular injection of sinusoidal current. We investigated electrical coupling within motoneurons by modeling these as three-compartment structures. This model, combined with the membrane potential–impulse frequency relationship, accurately predicted motoneuron impulse frequency from intracellular records of soma potentials obtained during fictive swimming. A corollary result was that the product of soma-to-neurite and neurite-to-soma coupling coefficients in leech motoneurons is large, 0.85, implying that the soma and neurite are electrically compact.  相似文献   

13.
To examine how walking patterns are adapted to changes in load, we recorded leg movements and muscle activities when cockroaches (Periplaneta americana) walked upright and on an inverted surface. Animals were videotaped to measure the hindleg femoro-tibial joint angle while myograms were taken from the tibial extensor and flexor muscles. The joint is rapidly flexed during swing and extended in stance in upright and inverted walking. When inverted, however, swing is shorter in duration and the joint traverses a range of angles further in extension. In slow upright walking, slow flexor motoneurons fire during swing and the slow extensor in stance, although a period of co-contraction occurs early in stance. In inverted walking, patterns of muscle activities are altered. Fast flexor motoneurons fire both in the swing phase and early in stance to support the body by pulling the animal toward the substrate. Extensor firing occurs late in stance to propel the animal forward. These findings are discussed within the context of a model in which stance is divided into an early support and subsequent propulsion phase. We also discuss how these changes in use of the hindleg may represent adaptations to the reversal of the effects of gravity.  相似文献   

14.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

15.
In rats, androgens in adulthood regulate the morphology of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), including the size of their somata and the length of their dendrites. There are conflicting reports about whether androgens exert similar influences on SNB motoneurons in mice. We castrated or sham-operated C57BL6J mice at 90 days of age and, thirty days later, injected cholera toxin conjugated horseradish peroxidase into the bulbocavernosus muscle (to label SNB motoneurons) on one side, and into intrinsic foot muscles contralaterally (to label motoneurons of the retrodorsolateral nucleus (RDLN)). Castrated mice had significantly smaller SNB somas compared to sham-operated mice while there were no differences in soma size of RDLN motoneurons. Dendritic length in C57BL6J mice, estimated in 3-dimensions, also decreased significantly after adult castration. In rats, androgens act directly through androgen receptors (AR) in SNB motoneurons to control soma size and nearly all SNB motoneurons contain AR. Since SNB somata in C57BL6J mice shrank after adult castration, we used immunocytochemistry to characterize AR expression in SNB cells as well as motoneurons in the RDLN and dorsolateral nucleus (DLN). A pattern of labeling matched that seen previously in rats: the highest percentage of AR-immunoreactive motoneurons are in the SNB (98%), the lowest in the RDLN (25%) and an intermediate number in the DLN (78%). This pattern of AR labeling is consistent with the possibility that androgens also act directly on SNB motoneurons in mice to regulate soma size in mice.  相似文献   

16.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

17.
Summary Connections between the four DMD neurons and metathoracic motoneurons in the locustSchistocerca were examined by recording extracellularly from the interneurons in the pro-mesothoracic connectives and intracellularly from seventeen motoneurons. A DIMD or DCMD spike causes an EPSP in the fast extensor tibiae motoneuron, which can be modified by changing the membrane potential. The EPSP always follows spikes at frequencies up to 200 Hz and with a latency of 0.9 ms, suggesting that the connections are monosynaptic and chemically mediated. EPSPs from the DIMD or DCMD arrive at the same time, their axons having the same conduction velocity, and appear simultaneously in the fast extensor tibiae motoneurons on both sides of the ganglion. There is spatial and temporal summation between the inputs but on no occasion did the motoneurons spike. Three inhibitory neurons are depolarized by DMD inputs and may on occasion spike, but it is not known whether these connections are direct. Similarly the slow excitatory motoneuron to the anterior coxal adductor muscle is hyperpolarized by DMD input. Other leg, flight or ventilatory motoneurons examined received no inputs from the DMD neurons. The connections shown are consistent with the hypothesis that the DMD neurons are in some way involved with initiation of a jump, but to achieve this must act synergistically with other inputs. This work was supported in part by USPHS grant No. NS 09404-03 to C.H.F.R. Dr. Rowell wishes to thank Dr. J. Phillipson for the use of facilities in the Oxford Department of Zoology during sabbatical leave.  相似文献   

18.
The locust jump consists of three distinct phases: Cocking: a rapid flexion of both hindleg tibia and locking of both tibia in full flexion. Co-contraction: simultaneous contractions in hindleg flexor and extensor muscles lasting about 0.5 s resulting in the storage of energy for the jump in elastic elements of the legs and muscles. Triggering: a sudden inhibition of flexor activity to allow the shortening of the contracted extensors and the release of the energy stored during the co-contraction phase. The neural circuitry controlling these three phases is now reasonably well understood. Some of its major features are: (1) pairs of large identifiable interneurons in the thoracic ganglia for evoking the cocking response (C-neurons) and for triggering the jump (M-neurons), (2) a central excitatory pathway from extensor to flexor tibiae motoneurons to ensure simultaneous activation of extensor and flexor motoneurons during the initial part of the co-contraction phase, (3) a positive feedback pathway from cuticular receptors to extensor motoneurons for maintaining extensor activity during the co-contraction phase, (4) proprioceptive feedback to the trigger interneurons for increasing their excitability during the co-contraction phase and thereby allowing a variety of external stimuli to activate the trigger neurons and evoke a jump, (5) presynaptic inhibition of visual pathways to the trigger neurons to ensure that the trigger neurons are not activated by the simultaneous occurrence of visual and auditory stimuli in the absence of proprioceptive input, and (6) a pair of multifunctional visual movement detecting neurons which can initiate cocking or trigger the jump depending on the animal's state.  相似文献   

19.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

20.
An electron-microscopic analysis of spinal motoneurons and their synapses was carried out in a frog (Rana catesbeiana). Six different types of boutons (S, F, M, P, C and GS) have been identified. Their distribution on spinal motoneuron somata and proximal dendrites is described. The mean linear percentage of the surface area covered by boutons is 26.1 +/- 1.9%. S-type boutons are preferentially concentrated on the soma and proximal dendrites. The relative number of S-type boutons (58.7%) was greater (p less than 0.01) than that of F-type boutons (41.3%). This is in contrast to mammalian spinal motoneurons where F-type boutons are much more numerous on the soma than S-type boutons. F-type boutons are randomly distributed and the average ratio of S:F-type boutons is 20:14 (S:F ratio = 1.4). In contrast, M-type boutons synapse exclusively on the distal part of the dorsal dendrites and are restricted to the intermediate zone or to the dorsal horn. P-type boutons form synapses upon the large M-type boutons. The polarity of these axoaxonic synapses is always from P to M. Similarities and differences between the synaptology of frog and mammalian spinal motoneurons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号