首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site 3 toxin, Anthopleurin-A (Ap-A), was used to modify inactivation of sodium channels in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Although Ap-A toxin markedly prolonged decay of sodium current (INa) in response to step depolarizations, there was only a minor hyperpolarizing shift by 2.5 +/- 1.7 mV (n = 13) of the half-point of the peak conductance- voltage relationship with a slight steepening of the relationship from - 8.2 +/- 0.8 mV to -7.2 +/- 0.8 mV (n = 13). Increases in Gmax were dependent on the choice of cation used as a Na substitute intracellularly and ranged between 26 +/- 15% (Cs, n = 5) to 77 +/- 19% (TMA, n = 8). Associated with Ap-A toxin modification time to peak INa occurred later, but analysis of the time course INa at multiple potentials showed that the largest effects were on inactivation with only a small effect on activation. Consistent with little change in Na channel activation by Ap-A toxin, INa tail current relaxations at very negative potentials, where the dominant process of current relaxation is deactivation, were similar in control and after toxin modification. The time course of the development of inactivation after Ap-A toxin modification was dramatically prolonged at positive potentials where Na channels open. However, it was not prolonged after Ap-A toxin at negative potentials, where channels predominately inactivate directly from closed states. Steady state voltage-dependent availability (h infinity or steady state inactivation), which predominately reflects the voltage dependence of closed-closed transitions equilibrating with closed-inactivated transitions was shifted in the depolarizing direction by only 1.9 +/- 0.8 mV (n = 8) after toxin modification. The slope factor changed from 7.2 +/- 0.8 to 9.9 +/- 0.9 mV (n = 8), consistent with a prolongation of inactivation from the open state of Ap-A toxin modified channels at more depolarized potentials. We conclude that Ap-A selectively modifies Na channel inactivation from the open state with little effect on channel activation or on inactivation from closed state(s).  相似文献   

2.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

3.
Voltage-activated sodium channels in central neurons of larval and adult Heliothis virescens were characterized using whole-cell patch clamp techniques. Macroscopic currents showing rapid activation and inactivation kinetics were uniformly sensitive to tetrodotoxin (IC(50)=1.9nM). Currents began to activate at voltage steps to -45mV and reached half maximal at -30mV. Fast inactivation was evident at voltages as negative as -75mV and reached half maximal at -50mV. Full recovery from inactivation occurred within 1 to 2ms. Currents in larval neurons exhibited similar properties to those of adult neurons, except for the rate of fast inactivation (t(1)), which was significantly slower in larval neurons. The biophysical properties of sodium channels remained unchanged for up to 3days in culture. Two insecticidal neurotoxins, LqhalphaIT and AaIT, produced distinctly different modifications of H. virescens sodium channels. LqhalphaIT slowed channel inactivation, while AaIT specifically shifted voltage-dependent activation to more negative potentials. Overall, the results indicate that sodium channels in H. virescens neurons exhibit biophysical characteristics similar to those of vertebrates, yet possess pharmacological uniqueness with respect to scorpion toxin modification.  相似文献   

4.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

5.
Voltage-dependent K+ channels control repolarization of action potentials and help establish firing patterns in nerve cells. To determine the nature and role of molecular components that modulate K+ channel function in vivo, we coinjected Xenopus oocytes with cRNA encoding a cloned subthreshold A-type K+ channel (mShal1, also referred to as mKv4.1) and a low molecular weight (LMW) fraction (2-4 kb) of poly(A)+ mRNA (both from rodent brain). Coinjected oocytes exhibited a significant (fourfold) increase in the surface expression of mShal1 K+ channels with no change in the open-channel conductance. Coexpression also modified the gating kinetics of mShal1 current in several respects. Macroscopic inactivation of whole oocyte currents was fitted with the sum of two exponential components. Both fast and slow time constants of inactivation were accelerated at all membrane potentials in coinjected oocytes (tau f = 47.2 ms vs 56.5 ms at 0 mV and tau s = 157 ms vs 225 ms at 0 mV), and the corresponding ratios of amplitude terms were shifted toward domination by the fast component (Af/As = 2.71 vs 1.17 at 0 mV). Macroscopic activation was characterized in terms of the time-to-peak current, and it was found to be more rapid at all membrane potentials in coinjected oocytes (9.9 ms vs 13.5 ms at 0 mV). Coexpression also leads to more rapid recovery from inactivation (approximately 2.4-fold faster at -100 mV). The coexpressed K+ currents in oocytes resemble currents expressed in mouse fibroblasts (NIH3T3) transfected only with mShal1 cDNA. These results indicate that mammalian regulatory subunits or enzymes encoded by LMW mRNA species, which are apparently missing or expressed at low levels in Xenopus oocytes, may modulate gating in some native subthreshold A-type K+ channels.  相似文献   

6.
三氟氯氰菊酯对棉铃虫神经细胞钠及钙通道作用机理研究   总被引:13,自引:0,他引:13  
用膜片钳技术对比分析了棉铃虫三氟氯氰菊脂抗性品系(R)及其同源对照品系(S)幼虫了体培养中枢神经细胞Na^2 通道的门控特性及杀虫剂对R和S神经细胞Na^ 、Ca^ 通道门控过程的影响。结果表明,S神经细胞Na^ 通道电流(S-INa)在-50-40mV激活,-20mV左右达峰值,R神经细胞Na^2 通道电流(R-INa)在-40mV左右激活,-10-0mV达峰值,即R-INa激活电压与峰值电压均向正电位方向移动约10mV,提示二者Na^ 通道控特性不同,R神经细胞Na^ 通道功能发生了变异。三氟氯氰菊酯作用后,S-INgn R-ISs的I-V曲线均向负电位方向移动的10mV,S-INa在20min后基本消失,而R-INa被阻断需时约90min,延长近5倍,其幅值有减小再增大的现象。对Ca^2 通道分析表明,杀虫剂作用后,R及S神经细胞Ca^2 通道电流的I-V曲线均向负电位移动10-20mV,提示三氟氯氰菊酯对Ca^2 通道的门控过程也有影响。与R-INa幅值起伏变化相联系,可推知杀虫剂对神经细胞的毒性作用中,Na^2 、Ca^2 通道均受影响。  相似文献   

7.
Neurons were acutely dissociated from the CA1 region of hippocampal slices from guinea pigs. Whole-cell recording techniques were used to record and control membrane potential. When the electrode contained KF, the average resting potential was about -40 mV and action potentials in cells at -80 mV (current-clamped) had an amplitude greater than 100 mV. Cells were voltage-clamped at 22-24 degrees C with electrodes containing CsF. Inward currents generated with depolarizing voltage pulses reversed close to the sodium equilibrium potential and could be completely blocked with tetrodotoxin (1 microM). The amplitude of these sodium currents was maximal at about -20 mV and the amplitude of the tail currents was linear with potential, which indicates that the channels were ohmic. The sodium conductance increased with depolarization in a range from -60 to 0 mV with an average half-maximum at about -40 mV. The decay of the currents was not exponential at potentials more positive than -20 mV. The time to peak and half-decay time of the currents varied with potential and temperature. Half of the channels were inactivated at a potential of -75 mV and inactivation was essentially complete at -40 to -30 mV. Recovery from inactivation was not exponential and the rate varied with potential. At lower temperatures, the amplitude of sodium currents decreased, their time course became longer, and half-maximal inactivation shifted to more negative potentials. In a small fraction of cells studied, sodium currents were much more rapid but the voltage dependence of activation and inactivation was very similar.  相似文献   

8.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

9.
Currents through normal and aconitine-modified sodium channels in the perfused neuroblastoma cell are measured under voltage clamp conditions. Aconitine shifts the voltage range of activation of the sodium channels towards more negative potentials by about 20 mV, and changes the selectivity, so that channels become more permeable to NH4+ than to Na+ ions. The currents through aconitine--modified channels are inactivated almost completely like those through the normal ones. Aconitine is effective when applied to both sides of the cell membrane. Steady-state characteristics of gating are discussed in terms of the model assuming three main states of the gate machinery: closed, open and inactivated.  相似文献   

10.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

11.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect.  相似文献   

12.
Sodium channel activations, measured as the fraction of channels open to peak conductance for different test potentials (F[V]), shows two statistically different slopes from holding potential more positive than -90 mV. A high valence of 4-6e is indicated a test potentials within 35 mV of the apparent threshold potential (circa -65 mV at -85 mV holding potential). However, for test potentials positive to -30 mV, the F(V) curve shows a 2e valence. The F(V) curve for crayfish axon sodium channels at these "depolarized" holding potentials thus closely resembles classic data obtained from other preparations at holding potentials between -80 and -60 mV. In contrast, at holding potentials more negative than -100 mV, the high slope essentially disappears and the F(V) curve follows a single Boltzmann distribution with a valence of approximately 2e at all potentials. Neither the slope of this simple distribution nor its midpoint (-20 mV) was significantly affected by removal of fast inactivation with pronase. The change in F(V) slope, when holding potential is increased from -85 to -120 mV, does not appear to be caused by the contribution of a second channel type. The simple voltage dependence of sodium current found at Vh -120 mV be used by to discriminate between models of sodium channel activation, and rules out models with three particles of equal valence.  相似文献   

13.
The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage- dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from - 50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The influence of extracellular pH (pH(o)) on low-voltage-activated calcium channels of acutely isolated DRG neurons of rats was examined using the whole cell patch-clamp technique. It has been found that in the neurons of middle size with capacitance C=60+/-4.8 pF (mean+/-S.E., n=8) extracellular acidification from pH(o) 7.35 to pH(o) 6.0 significantly and reversibly decreased LVA calcium current densities by 75+/-3.7%, shifted potential for half-maximal activation to more positive voltages by 18.7+/-0.6 mV with significant reduction of its voltage dependence. The half-maximal potential of steady-state inactivation shifted to more positive voltages by 12.1+/-1.7 mV (n=8) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of middle size have midpoint pK(a)=6.6+/-0.02 and hill coefficient h=0.94+/-0.04 (n=5). In small cells with capacitance C=26+/-3.6 pF (n=5), acidosis decreased LVA calcium current densities only by 15.3+/-1.3% and shifted potential for half-maximal activation by 5.5+/-1.0 mV with reduction of its voltage dependence. Half-maximal potential of steady-state inactivation shifted to more positive voltages by 10+/-1.6 mV (n=4) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of small size have midpoint pK(a)=7.9+/-0.04 and hill coefficient h=0.25+/-0.1 (n=4). These two identified types of LVA currents besides different pH sensitivity demonstrated different kinetic properties. The deactivation of LVA currents with weak pH sensitivity after switching off depolarization to -30 mV had substantially longer decay time than do currents with strong pH sensitivity (tau(d) approximately 5 ms vs. 2 ms respectively). It was found that the prolongation of depolarization steps slows the subsequent deactivation of T-type currents in small DRG neurons. Deactivation traces in these neurons were better described by the sum of two exponentials. Thus, we suppose that T-type channels in small DRG neurons are presented mostly by alpha1I subunit. We suggest that these two types of LVA calcium channels with different sensitivity to external pH can be differently involved in the origin of neuropathic changes.  相似文献   

15.
Sodium and calcium currents in dispersed mammalian septal neurons   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.  相似文献   

16.
Ca channel currents in primary cultured pars intermedia cells were studied using whole-cell recording with patch pipettes. Experiments were carried out at 18-21 degrees C in cells internally dialyzed with K-free, EGTA-containing solutions and in the presence of 10 mM Ca or 10 mM Ba in the external solution. Ca and Ba currents depended on the activity of two main populations of channels, SD and FD. With Ca as the charge carrier, these two populations differed in their closing time constants at -80 mV (SD, 1.8 ms; FD, 110 microseconds), apparent activation levels (SD, -40 mV; FD, -5 mV), half-maximal activation levels (SD, +5 to +10 mV; FD, +20 to +25 mV), half-times of activation at +20 mV (SD, 2.5-3.5 ms; FD, 1.0-1.3 ms), and time courses of inactivation (SD, fast; FD, slow). Functional FD channels were almost completely lost within 20-25 min of breaking into a cell, whereas SD channels retained most of their functional activity. In addition, the conductance-voltage curve for FD channels shifted approximately 15 mV toward more negative membrane potentials within 11-14 min under whole-cell recording. At that time, 60-70% of the FD channel maximum conductance was lost. However, the conductance-voltage curve for SD channels shifted less than 5 mV within 25 min. The addition of 3 mM MgATP and 40 microM GTP to the internal solution slowed down the loss of FD channels and prevented the shift in their activation curve. It was also found that the amplitude of the current carried by FD channels tends to increase as a function of the age of the culture, with no obvious changes in the kinetic properties of the channels or in SD channel activity.  相似文献   

17.
Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at potentials close to the resting membrane potential and is very resistant to inactivation, it probably plays an important role in the repetitive firing of action potentials caused by prolonged depolarizations such as those that occur during barrages of synaptic inputs into these cells.  相似文献   

18.
Chloride channels from the apical plasma membrane fraction of rectal gland of Squalus acanthias were characterized by incorporation into planar bilayers in the presence of cAMP-PK/ATP. In a total of 80 bilayer preparations, 21 Cl-selective channels were observed as single channels and 13 as pairs. This was a significantly greater number of double Cl channels than expected from a binomial distribution. The double Cl channels were divided into two groups based on kinetic and voltage-dependent behavior. One group had properties identical to the single channels (gb1) while the other was consistent with a double-barreled channel (gb2) with coordinated activity between proto-channels. The single-channel slope conductances of gb1 and gb2 from -60 to +20 mV with a 250/70 mM KCl gradient were 41 and 75 pS, respectively. With symmetrical 250 mM KCl, the I-V relation of gb1 showed outward rectification with 47.8 +/- 6.6 pS at cis negative potentials and 68.9 +/- 6.1 pS at cis positive potentials. gb1 was open from 70 to 95% at all electrochemical potentials from -80 to +40 mV. gb2 was steeply voltage dependent between -80 and -20 mV. Both gb1 and gb2 were insensitive to Ca (from 100 nm to 1 microM), blocked by 0.1 mM DIDS and highly selective for chloride. These data suggest that double-barreled Cl channels are related to the family of small, outwardly rectifying Cl channels of epithelial membranes.  相似文献   

19.
20.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号