首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5'-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M + H - H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M - H]-, a glycerol (G) adduct ion at m/z 457 [M - H + G]- and a dimer ion at m/z 731 [2M - H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M - H]- and cationized species at m/z 626 [M + Na - 2H]- and 648 [M + 2Na - 3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M - H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M - H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M - H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.  相似文献   

2.
Chemical ionization (CI) mass spectra with isobutane and ammonia for the oligosaccharides obtained from sphingoglycolipids were compared with their electron impact (EI) mass spectra. The oligosaccahride moieties were liberated from the parent glycolipids and were further reduced with sodium borohydride. They were analyzed as their permethyl peracetyl and pertrimethylsilyl derivatives. In the CI spectra, peaks corresponding to QM+ and/or [M-59]+ were observed in all of the peracetylated oligosaccharides examined. In CI with ammonia as the reagent, H+ was transferred to nitrogen-containing saccharides to produce [MH]+ and NH4 was transferred to nitrogen-free saccharides to yield [M+NH4]+ as QM+. Non-reducing ends yielded very intense peaks in CI spectra. On the other hand, the reduced end, glucitol, produced rather prominent peaks in EI spectra. Fragment ions due to cleavage of glycosidic bonds were major ones under the CI conditions, and they could be used for elucidating the sugar sequence in the oligosaccharides. An additional characteristic feature in the CI spectra was that ions due to scission of hexosaminyl glycosidic linkages were observed with very high intensities.  相似文献   

3.
A liquid chromatography/tandem mass spectrometry (LC/MS) with atmospheric pressure chemical ionization (APCI) for the quantification of ergosterol, lanosterol, and squalene was developed to evaluate the combination effects of phenolic compounds with fluconazole on ergosterol biosynthesis in Candida albicans. The three analytes were separated by a column of C18 and were quantified without interference with each other using positive mode tandem mass spectrometry (MS/MS). Molecular ions of ergosterol and lanosterol were detected as the [M+H-H2O]+ ion species at m/z 380 and 410, whereas squalene appeared as the [M+H]+ ion species at m/z 412. On fragmentation of ergosterol, lanosterol, and squalene, the product ions at m/z 69, 149, and 109, respectively, were present as major fragments. These product ions were used for the quantification of them in multiple reaction monitoring acquisition mode. The relationship between signal intensity and the analytes' concentration was linear over the concentration range of 0.05-10 microg/ml. Following the treatment of C. albicans with fluconazole in combination with albicanyl caffeate, resveratrol, and 3,4'-difluorostilbene, respectively, the content of ergosterol in both the sensitive and resistant C. albicans showed depletion, whereas the squalene showed accumulation especially in the sensitive isolates determined with the method developed.  相似文献   

4.
Electrospray ionization mass spectrometry (ESI-MS) of mixtures containing glutathione (GSH) and nitrates, oxides or chlorides of the heavy metals, arsenic, antimony, cadmium, mercury, thallium, lead or bismuth allows for definitive identification of complexes in the gas phase. In the positive ion mode, spectra show prominent m/z peaks that are assigned to monocations of general formulae [E(GSH)-xH]+ (E = Cd, Hg, Tl, Pb, As, Sb or Bi; x = 0, 1 or 2), [E(GSH)2-xH]+ (E = Hg, As, Sb, or Bi; x = 1 or 2), [E(GSH)3-xH]+ (E = As, Sb or Bi; x = 2), [E2(GSH)-xH]+ (E = Tl or Pb; x = 1 or 3), [E2(GSH)2-xH]+ (E = Bi; x = 5), [E2(GSH)3-xH]+ (E = Bi; x = 5), and/or [E3(GSH)-xH]+ (E = Tl; x = 2). Spectra obtained in the negative ion mode give m/z peaks observed in assigned to monoanionic species that correspond to some of the monocationic species listed above with two protons removed. The results demonstrate the potential application of ESI-MS as a versatile and efficient approach to study toxic heavy metals in biological systems. In addition, the observations provide a foundation database to understand the chemistry of these heavy metals with bio-molecules.  相似文献   

5.
Adducts of catechols and histidine, which are produced by reactions of 1,2-quinones and p-quinone methides with histidyl residues in proteins incorporated into the insect exoskeleton, were characterized using electrospray ionization mass spectrometry (ESMS), tandem electrospray mass spectrometry (ESMS-MS, collision-induced dissociation), and ion trap mass spectrometry (ITMS). Compounds examined included adducts obtained from acid hydrolysates of Manduca sexta (tobacco hornworm) pupal cuticle exuviae and products obtained from model reactions under defined conditions. The ESMS and ITMS spectra of 6-(N-3')-histidyldopamine [6-(N-3')-His-DA, pi isomer] isolated from M. sexta cuticle were dominated by a [M + H]+ ion at m/z 308, rather than the expected m/z 307. High-resolution fast atom bombardment MS yielded an empirical formula of C14H18N3O5, which was consistent with this compound being 6-(N-1')-histidyl-2-(3, 4-dihydroxyphenyl)ethanol [6-(N-1')-His-DOPET] instead of a DA adduct. Similar results were obtained when histidyl-catechol compounds linked at C-7 of the catechol were examined; the (N-1') isomer was confirmed as a DA adduct, and the (N-3') isomer identified as an (N-1')-DOPET derivative. Direct MS analysis of unfractionated cuticle hydrolysate revealed intense parent and product ions characteristic of 6- and 7-linked adducts of histidine and DOPET. Mass spectrometric analysis of model adducts synthesized by electrochemical oxidative coupling of N-acetyldopamine (NADA) quinone and N-acetylhistidine (NAcH) identified the point of attachment in the two isomers. A prominent product ion corresponding to loss of CO2 from [M + H]+ of 2-NAcH-NADA confirmed this as being the (N-3') isomer. Loss of (H2O + CO) from 6-NAcH-NADA suggested that this adduct was the (N-1') isomer. The results support the hypothesis that insect cuticle sclerotization involves the formation of C-N cross-links between histidine residues in cuticular proteins, and both ring and side-chain carbons of three catechols: NADA, N-beta-alanyldopamine, and DOPET.  相似文献   

6.
Oligosaccharides produced by submerged cultures of C. africana and C. sorghi were isolated by semipreparative HPLC. Structure of 6-O-beta-D-fructofuranosyl-D-glucopyranose (blastose), 1,6-bis-O-(beta-D-fructofuranosyl)-alpha-D-glucopyranoside (neokestose) and two sugar alcohols, 1-O-beta-D-fructofuranosyl-D-mannitol (fructosylmannitol) and 1,6-bis-O-(beta-D-fructofuranosyl)-D-mannitol (bisfructosylmannitol) was determined by NMR spectrometry. MALDI TOF MS analysis revealed molecular ions [M+Na]+ that indicate the presence of other tetra- and pentasaccharides (m/z = 689.4 and 851.5, respectively) and corresponding sugar alcohol (m/z = 691.4). Rapid conversion of sucrose into series of oligosaccharides and corresponding sugar alcohols was observed in all tested strains.  相似文献   

7.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg.  相似文献   

8.
I. I. Mechnikov Kharkov Research Institute of Microbiology, Vaccines and Sera, Ministry of Public Health of the Ukrainian SSR. The results of mass spectrometric investigation of decamethoxine++, an antimicrobial chemotherapeutic drug, are presented. It was shown that desorption-field mass spectrometry provided recording decamethoxine++ intensive quasimolecular ions [M.Cl]+ and [M]++ forming under conditions of high electric intensity only from the intact parent molecule. Hence, the presence of the peaks in the desorption field mass spectra made it possible to definitively determine decamethoxine++ in the samples. Therefore, the procedure of desorption-field mass spectrometry proved reliable in identification of bisquaternary ammonium compounds. Ways for thermal decomposition and mass spectrometric fragmentation of the decamethoxine++ molecule under various ionization conditions are also discussed.  相似文献   

9.
The conversion of dihydroneopterin triphosphate in the presence of 6-pyruvoyl tetrahydropterin synthase was followed by 1H-NMR spectroscopy. The interpretation of the spectra of the product is unequivocal: they show formation of a tetrahydropterin system carrying a stereospecifically oriented substituent at the asymmetric C(6) atom. The spectra are compatible with formation of a (3')-CH3 function, and with complete removal of the 1' and 2' hydrogens of dihydroneopterin triphosphate. The fast-atom-bombardment/mass spectrometry study of the same product yields a [M + H]+ ion at m/z 238 compatible with the structure of 6-pyruvoyl tetrahydropterin. The data support the proposed structure of 6-pyruvoyl tetrahydropterin as a key intermediate in the biosynthesis of tetrahydrobiopterin.  相似文献   

10.
A structurally unique glucosinolate (GSL) was identified to be 4-(beta-D-glucopyranosyldisulfanyl)butyl GSL in rocket leaves. The positive-ion electrospray ionization mass spectrometry (ESI-MS) data indicated that the new GSL had a molecular weight of 521 (m/z 522, [M+H](+), as desulfo-GSL). The molecular formula of the substance was determined to be C(17)H(32)O(11)NS(3) (m/z 522.1143, [M+H](+)) based on its positive-ion high-resolution fast atom bombardment mass spectrometry (HR-FAB-MS) data. For the further confirmation, desulfated GSL of 4-(beta-D-glucopyranosyldisulfanyl)butyl GSL was prepared by commercial 1-thio-beta-D-glucose and dimeric 4-mercaptobutyl desulfo-GSL, which was also isolated from rocket leaves, and its chemical structure was then confirmed by MS data and nuclear magnetic resonance (NMR) spectroscopy. In addition, the antioxidative activity of 4-(beta-D-glucopyranosyldisulfanyl)butyl desulfo-GSL was measured by means of chemiluminescence (CL) for evaluating the functional properties. The antioxidative activity (2.089 unit/g) was relatively higher than that of dimeric 4-mercaptobutyl desulfo-GSL (1.227).  相似文献   

11.
Methyl esters of C18 polyunsaturated fatty acids, including gamma-linolenic acid, alpha-linolenic acid and stearidonic acid, were epoxidised using m-chloroperbenzoic acid. Nine monoepoxides were obtained by normal-phase HPLC, identified using LC-MS and NMR, and characterized by NMR spectroscopy and mass spectrometry. This study is focused on structural characterization using LC-MS and LC/APCI/MS/MS. The elution profiles of these monoepoxides in RP-HPLC are determined as 12,13->9,10->6,7-epoxy, 9,10->15,16->12,13-epoxy and 15,16->12,13->9,10-epoxy derivatives of gamma-linolenic, alpha-linolenic and stearidonic acid methyl esters, respectively. The major diagnostic fragmentations in MS/MS identified are postulated to be induced by cleavages of the epoxide ring and alpha-bond cleavage to the epoxy group from [M+H]+ and/or [M+H-MeOH]+.  相似文献   

12.
A sensitive high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) assay was developed to determine raltitrexed in human plasma. After addition of benazeprilat as the internal standard (IS), methanol was used to produce a protein-free extract. Chromatographic separation was achieved with a Zorbax SB-C18 column (Narrow-Bore 2.1 mmx150 mm, 5-microm) using a mobile phase of acetonitrile-water containing 0.1% formic acid and 2% methanol (21.9:78.1, v/v). Raltitrexed was determined with electrospray ionization-mass spectrometry. HPLC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at [M+H]+ m/z 459.1 for raltitrexed and [M+H]+ m/z 397.1 for IS. Calibration curves were linear over the range of 2.0-3000 ng/ml. The lower limit of quantification was 2.0 ng/ml. The intra- and inter-batch variability values were less than 6.7% and 10.3%, respectively. The mean plasma extraction recovery of raltitrexed was in the range of 85.2-91.1%. The method was successfully applied to determine the plasma concentrations of raltitrexed in eight Chinese colorectal cancer patients.  相似文献   

13.
Thin layer chromatography of lysosulfatide showed anomalous Rf-values in contrast with such lysosphingolipids as glucopsychosine and galactopsychosine with neutral, acidic, and alkaline developing solvents. This was thought to be due to the presence of oppositely charged sulfate and amino groups in the lysosulfatide. In the negative mode of fast atom bombardment mass spectrometry, the lysosulfatide showed the pseudo molecular ion (M-H)- peak at m/z 540 and sulfate ion peak at m/z 97, whereas in the positive mode, it showed not only the pseudo molecular ion (M+H)+ peak at m/z 542, but also the major peaks of protonated psychosine at m/z 462 and fragment ions of dehydrated sphingosine at m/z 282 and 264, 13C-NMR signals of all carbons of lysosulfatide were determined by using distortionless enhancement by polarization transfer. The difference in chemical shifts of ring carbons of galactose residue between lysosulfatide and galactopsychosine was largest at C-3 (downfield shift), thereby indicating the location of the sulfate group to be at C-3 of galactose. This conclusion is supported by the 1H-NMR spectra of the lysosulfatide and galactopsychosine. Thus, the chemical structure of lysosulfatide was confirmed by fast atom bombardment mass spectrometry and 13C- and 1H-NMR spectroscopy. Furthermore, 13C-NMR signals of C-1 to C-5 of the sphingosine moiety showed significantly different chemical shifts between the lysosulfatide and galactopsychosine. These differences suggested that C-1 to C-5 of sphingosine might be influenced by intramolecular or intermolecular interaction between the sulfate group of the galactose residue and the amino group of sphingosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The t-butyldimethylsilyl derivatives of 1,2-diakyl, 1-alk-1'-enyl-2-acyl, 1-alkyl-2-acyl and 1,2-diacyl glycerols were analysed with a gas chromatograph mass spectrometer system. The characteristic fragment ions were as follows. The molecular weight determining ion was [M-57]+, which was formed by cleavage of the t-butyl radical from the molecular ion. The nature of the alk-1'-enyl residue could be determined by the presence of ions at [RCH-CH 56]+ and [RCH = CH + 130]+ (RCH = CH = alk-1'-enyl), and the alkyl residue by the ion at [R + 130]+(R = alkyl group). Ions giving information about the acyl group, [RCO]+, [RCO + 74]+ and [M-RCH = CHO, -RO or -RCOO]+ were also observed. The mass spectra of pairs of trimethylsilyl and t-butyldimethylsilyl derivatives showed differences in several respects. The t-butyldimethylsilyl derivatives gave more effective information for elucidating the structure of phosphoglycerides.  相似文献   

15.
The structures of intact choline phospholipids were determined by positive and negative ion mode fast atom bombardment mass spectrometry, tandem mass spectrometry, and B2/E and B/E constant linked scan mass spectrometry. The molecular weight of the choline lipid could be clearly determined by the appearance of [M + H]+ or [M + Na]+ in the positive ion mode and triplet ions, e.g., [M - 15]-, [M - 60]-, and [M - 86]-, in the negative ion mode. The structures of the triplet ions were assigned to [M - CH3]-, [M - HN(CH3)3]-, and [M - CH2 = CHN(CH3)3]-, respectively, by the MS/MS of each triplet ion, and the origin of the triplet ions was found as the matrix-ion adduct to the target molecule by using the B2/E linked scan technique. The polar group could be identified by the existence of ions indicating glycerophosphocholine and its cleavage products and by the presence of the triplet ions in the negative ion mode. Positional determination of the distribution of constituent fatty acyl groups was carried out by comparing the intensity of deacylated ions from positions 1 and 2 in the positive ion mode and of the ions produced by MS/MS of the triplet ions. From the mass number of the [RCOO]- ion which appeared in the negative ion mode, the molecular weight and degree of unsaturation of the fatty acyl group were determined. The position of double bond(s) in the acyl group was determined from the MS/MS of the [RCOO]- ion.  相似文献   

16.
Fully acetylated methyl x-deoxy-x-fluoro-alpha-D-glucopyranosides have been studied using electron impact and ammonia chemical ionisation mass spectrometry. Mass analysed metastable ion kinetic energy spectroscopy (MIKE), collisional activation (CID), and accelerated voltage scanning have been used to evaluate complete fragmentation schemes. Characteristic differences in the fragmentation of positional isomers were noted on analysis of the spectra, and these make it possible to determine the location of fluorine in the molecules studied. Collisionally activated fragmentation of [M-OCH3]+ ions, produced by electron impact, provides an alternative method for localisation of the fluorine atoms. To the contrary, MIKE and CID spectra of [M + NH4]+ cluster ions produced by chemical ionisation did not afford such structural information.  相似文献   

17.
Electrospray ionisation mass spectrometry (ES-MS) has been used to probe the coordination chemistry of metabolites such as sporidesmin D (spdD), found in the saprophytic fungus Pithomyces chartarum, and the related bisdethiobis(methylthio)gliotoxin (dimethylgliotoxin, Megtx). SpdD forms complexes of the type [spdD+M(MeCN)] and [2spdD+M]+ (M=Cu, Ag) and, at higher cone voltages, [spdD+M]+. The bis(ligand) ion [2spdD+M]+ was observed at very high cone voltages, indicating it has appreciable stability; the proposed structure of this species has a four-coordinate metal ion with two bidentate spdD ligands, coordinated through their SMe groups. 1H NMR titrations of spdD with K+, Ag+ and Cu+ provided additional evidence for complex formation with the soft metals. SpdD forms only relatively weak complexes with Zn2+, Cd2+, Co2+ and Mn2+, in keeping with the known reduced tendency of these metals to form stable thioether complexes. ES-MS studies of Megtx showed similar results to spdD, with stable adducts formed with Cu+ and Ag+ ions. The X-ray crystal structure of spdD is also reported.  相似文献   

18.
A highly sensitive and specific quantitative assay for the determination of albuterol in human plasma, based on selected ion monitoring gas chromatography chemical ionization mass spectrometry, has been developed. The [MH]+ ions from the tri-TMS derivatives of albuterol (m/z 456) and the internal standard (2H3)albuterol (m/z 459), were assayed simultaneously by selected ion monitoring. The lower limit of quantitation is 0.25 ng ml-1 and the average assay precision (CV) for albuterol concentrations ranging from 0.25 ng ml-1 to 25 ng ml-1 is approximately 4%. This method is currently being employed for the routine quantitation of albuterol in plasma following the administration of doses therapeutically effective to man.  相似文献   

19.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

20.
The formation of thioester-linked glutathione (GSH) conjugates of bile acids (BAs) is presumed to occur via trans-acylation reactions between GSH and reactive acyl-linked metabolites of BAs. The present study examines the chemical reactivity of cholyl-adenylate and cholyl-CoA thioester, acyl-linked metabolites of cholic acid (CA), with GSH to form CA-GSH conjugate in vitro. The authentic specimen of CA-GSH was synthesized along with GSH conjugates of four common BAs found in the human body. Their structures were confirmed by proton-nuclear magnetic resonance spectroscopy and electrospray ionization (ESI)-tandem mass spectrometry in positive- and negative-ion modes. Incubation of cholyl-adenylate or cholyl-CoA thioester with GSH was carried out at pH 7.5 and 37 degrees C for 30 min, with analysis of the reaction mixture by liquid chromatography/ESI-tandem mass spectrometry, where CA-GSH was detected on the product ion mass chromatograms monitored with stable and abundant dehydrated positive-ion [M+HH(2)O](+) at m/z 680.3 and fragmented negative-ion [GSHH](-) at m/z 306.0, and was definitely identified by CID spectra by comparison with those of the authentic sample. The results show that both cholyl-adenylate and cholyl-CoA thioester are able to acylate GSH in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号