首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present experiments was to examine the short- and long-term effects of estradiol-17 beta (E2), progesterone (P), and 5 alpha-dihydrotestosterone (DHT), alone and in combination, on the gonadotrophin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion, using an ovariectomized rat pituitary cells culture model. After 72 h in steroid-free medium, pituitary cells were further cultured for 24 h in medium with or without E2 (1 nM), P (100 nM), or DHT (10 nM). Cultures were then incubated for 5 h in the absence or presence of 1 nM GnRH with or without steroids. LH was measured in the medium and cell extract by radioimmunoassay. The results show that the steroid hormones exert opposite effects on the release of LH induced by GnRH, which seems to be dependent upon the length of time the pituitary cells have been exposed to the steroids. In fact, short-term (5 h) action of E2 resulted in a partial inhibition (64% of control) of LH release in response to GnRH, while long-term (24 h) exposure enhanced (158%) GnRH-induced LH release. Similar results were obtained with DHT, although the magnitude of the effect was lower than with E2. Conversely, P caused an acute stimulatory action (118%) on the LH released in response to GnRH and a slightly inhibitory effect (90%) after chronic treatment. GnRH-stimulated LH biosynthesis was also influenced by steroid treatment. Significant increases in total (cells plus medium) LH were observed in pituitary cells treated with E2 or DHT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We investigated the mechanism of estradiol-17beta (E2) action on stimulation of LH (=gonadotropin II) release in the black porgy fish (Acanthopagrus schlegeli Bleeker) using an in vivo approach and primary cultures of dispersed pituitary cells in vitro. In vivo, E2 but not androgens (testosterone [T] and 11-ketotestosterone [11-KT]) significantly stimulated plasma LH in a dose-dependent manner. Estradiol-17beta also increased brain content of seabream GnRH. GnRH antagonist prevented E2 stimulation of LH release in vivo, indicating that the effect of E2 on LH was mediated by GnRH. In vitro, sex steroids (E2, T, 11-KT) alone had no effect on basal LH release in the cultured pituitary cells, but GnRH significantly stimulated LH release. Estradiol-17beta potentiated GnRH stimulation of LH release, an effect that was inhibited by GnRH antagonist, and 11-KT, but not T, also potentiated GnRH stimulation of LH release. The potentiating effect of 11-KT on GnRH-induced LH release in vitro was stronger than that of E2. These data suggest that E2 triggers LH release in vivo by acting both on GnRH production at the hypothalamus and on GnRH action at the pituitary. In contrast, 11-KT may only stimulate GnRH action at the pituitary. The E2) induction of LH release, through multiple interactions with GnRH control, supports a possible central role of E2in the sex change observed in the protandrous black porgy.  相似文献   

3.
We studied the effects of 17 beta-estradiol (E2) on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release induced by drugs that activate different intracellular signal transduction mechanisms in rat anterior pituitary cells. Cells were pretreated with E2 (6 x 10(-10) M) or diluent for 24 h. Then, both E2- and diluent-pretreated cells were incubated for 4 h with E2 or diluent, respectively, with or without drugs, and in the presence or absence of gonadotropin-releasing hormone (GnRH). Media were assayed for LH and FSH by radioimmunoassays. E2 treatment had no effect on basal FSH release, but occasionally stimulated basal LH release. Phospholipase C (PLC), L-alpha-1,2-dioctanoyl glycerol (C8), veratridine, 8-bromo-cyclic adenosine 3',5'-monophosphate (8-Br-cAMP), melittin (a phospholipase A2 [PLA2] activator), arachidonic acid, PLA2, and GnRH all stimulated LH and FSH release in both E2- and diluent-treated cells. E2 treatment increased both LH and FSH release induced by GnRH, PLC, C8, veratridine, and 8-Br-cAMP, but not by melittin, arachidonic acid, and PLA2. Neither C8, PLA2, nor arachidonic acid in combination with a maximal dose of GnRH had additive effects on either LH or FSH release, whereas melittin increased the maximal response to GnRH in both E2- and diluent-treated cells. The effects of veratridine and 8-Br-cAMP depended on dose of GnRH and presence or absence of E2. These results suggest that E2 augments stimulus-coupled gonadotropin release by interacting with the Ca2+-, and/or diacylglycerol-, and cAMP-activated pathways, but not with the arachidonic acid-activated pathway.  相似文献   

4.
The demonstration that activators of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), such as phorbol esters and diacylglycerols, can provoke luteinizing hormone (LH) release from pituitary gonadotropes, suggests a possible role for protein kinase C in stimulus-release coupling. We now report that administration of phorbol myristate acetate (PMA) to pituitary cell cultures causes a sustained reduction in Triton X-100-extracted protein kinase C activity. Further, phorbol ester- and diacylglycerol-stimulated LH release, as well as inhibition by PMA of gonadotropin-releasing hormone (GnRH)-stimulated inositol phosphate production, were reduced by pretreatment with PMA. The effects of phorbol ester pretreatment on PMA-stimulated LH release and protein kinase C activity were dose-dependent, sustained (greater than or equal to 24 h) and specific (no measurable effect with 4 alpha-phorbol didecanoate). The effect on PMA-stimulated LH release was apparently Ca2+-independent. In pituitary cell cultures with reduced protein kinase C activity, the gonadotropes have reduced responsiveness to PMA but release a similar proportion of cellular LH in response to Ca2+-mobilizing secretagogues (GnRH and A23187) as do control cells. The normal responsiveness to GnRH of cells with reduced responsiveness to protein kinase C activators calls into question the requirement for this enzyme for GnRH-stimulated LH release.  相似文献   

5.
In intact sheep gonadotropes, the protein kinase inhibitor, staurosporine, inhibited the stimulatory effect of phorbol 12-myristate 13-acetate (PMA) on luteinizing hormone (LH) secretion. Under the same conditions staurosporine enhanced gonadotrophin-releasing hormone (GnRH)-stimulated LH exocytosis without altering the EC50 of GnRH and without affecting basal LH exocytosis. These results suggest that PKC does not play a major role in mediating acute GnRH-stimulated LH exocytosis. Furthermore, they demonstrate that staurosporine enhances GnRH stimulus-secretion coupling. Both extracellular Ca2(+)-dependent and Ca2(+)-independent components of GnRH-stimulated LH secretion were enhanced by the drug. Staurosporine had no effect on GnRH stimulation of cAMP and inositol phosphate synthesis. In permeabilized cells staurosporine did not enhance Ca2(+)- and cAMP-stimulated LH exocytosis. Based on these results we hypothesize that staurosporine inhibits a protein kinase which is activated by GnRH and which negatively modulates GnRH stimulus-secretion coupling.  相似文献   

6.
Sheep anterior-pituitary cells permeabilized with Staphylococcus aureus alpha-toxin were used to investigate the role of cyclic AMP (cAMP) in exocytosis of luteinizing hormone (lutropin, LH) under conditions where the intracellular free Ca2+ concentration ([Ca2+]free) is clamped by Ca2+ buffers. At resting [Ca2+]free (pCa 7), cAMP rapidly stimulated LH exocytosis (within 5 min) and continued to stimulate exocytosis for at least 30 min. When cAMP breakdown was inhibited by 3-isobutyl-1-methylxanthine (IBMX), the concentration giving half-maximal response (EC50) for cAMP-stimulated exocytosis was 10 microM. cAMP-stimulated exocytosis required millimolar concentrations of MgATP, as has been found with Ca2(+)- and phorbol-ester-stimulated LH exocytosis. cAMP caused a modest enhancement of Ca2(+)-stimulated LH exocytosis by decreasing in the EC50 for Ca2+ from pCa 5.6 to pCa 5.9, but had little effect on the maximal LH response to Ca2+. Activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) dramatically enhanced cAMP-stimulated LH exocytosis by both increasing the maximal effect 5-7-fold and decreasing the EC50 for cAMP to 3 microM. This synergism between cAMP and PMA was further augmented by increasing the [Ca2+]free. Gonadotropin-releasing hormone (gonadoliberin, GnRH) stimulated cAMP production in intact pituitary cells. Since GnRH stimulation is reported to activate PKC and increase the intracellular [Ca2+]free, our results suggest that a synergistic interaction of the cAMP, PKC and Ca2+ second-messenger systems is of importance in the mechanism of GnRH-stimulated LH exocytosis.  相似文献   

7.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   

8.
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.  相似文献   

9.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

10.
Objectives were to determine if neuropeptide Y (NPY) had direct effects GnRH induced secretion of LH from the anterior pituitary gland, and if endogenous steroids modulated the effect of NPY. To accomplish these objectives, 15 Hereford heifers were assigned to one of three ovarian status groups: follicular, luteal, or ovariectomized. One animal from each of the three ovarian status groups was slaughtered on each of 5 days and anterior pituitary gland harvested. Anterior pituitary gland cells within ovarian status were equally distributed and randomly assigned to one of three cell culture treatments: no NPY or GnRH (control), 10 nM GnRH, or 100 nM NPY+10 nM GnRH. Anterior pituitary cell cultures were incubated with or without NPY for 4 h and further incubated for an additional 2 h with or without GnRH and supernatant collected for quantification of LH. Treatment of anterior pituitary cell cultures with GnRH or GnRH+NPY did not affect LH release in cultures obtained from follicular (S.E.=5%; P=0.58) or ovariectomized (S.E.=7%; P=0.22) heifers. Both GnRH and GnRH+NPY increased LH release from anterior pituitary cell cultures from heifers in the luteal phase (S.E.=14%; P < or = 0.05) compared to control cultures. Cultures from luteal phase heifers treated with GnRH did not differ from those treated with GnRH+NPY (P=0.34). These data provide evidence to suggest that effects of NPY on LH release may occur primarily at the level of the hypothalamus.  相似文献   

11.
Maitotoxin (MTX) stimulates gonadotropin release from pituitary cell cultures. The time course and efficacy of LH release in response to GnRH and to MTX are similar; both secretagogues require extracellular Ca2+ and are inhibited by the selective Ca2+ ion channel antagonist methoxyverapamil (D600). LH release in response to either GnRH or MTX is not measurably inhibited by two other chemical classes of Ca2+ ion channel inhibitors represented by nifedipine and by diltiazem. The two secretagogues are nonadditive in their action on LH release when presented at high doses and prior studies indicate that MTX has no endogenous ionophoretic activity. These observations indicate that MTX likely stimulates LH release due to activation of the GnRH receptor associated Ca2+-ion channel in the gonadotrope. We have therefore assessed the functional state of this channel during the development of homologous desensitization of the gonadotrope to GnRH by measuring the ability of MTX to stimulate LH release. Cells were desensitized with GnRH in the presence of 3 mM EGTA. Under these conditions, the cells become refractory to GnRH in the absence of gonadotropin release since the latter process, but not the former, requires extracellular Ca2+. Accordingly, this approach allows assessment of the degree of desensitization in the absence of the influence of gonadotropin depletion. Such desensitized cells are less responsive to GnRH. Desensitized pituitary cells also respond with diminished efficacy and potency to MTX three or more hours after GnRH treatment but not at an earlier time (1 h) when GnRH receptors are diminished. These data are consistent with a model in which homologous desensitization is viewed as developing in two phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Copper stimulated LH release from cultured rat pituitary cells in a dose-and time-dependent manner. After 4 h of incubation with 10 mu M Cu2+, LH release was stimulated by 3-fold. The release of LH stimulated by Cu2+ was Ca2+ dependent, thus excluding the possibility that the releasing activity of this divalent cation was due to a toxic effect on pituitary cells. The stimulatory action of Cu2+ is substantially mediated via the GnRH-receptors since Cu2+ inhibited 125I-Buserelin binding and since GnRH-antagonist blocked most of the Cu2+-stimulated LH release (80%). Both GnRH (1 microM) and Cu2+ (10 microM) induced desensitization of pituitary cells to a subsequent stimulation of either GnRH (0.5 nM) or Cu2+ (10 microM). However, in contrast to GnRH, Cu2+ did not induce down regulation of GnRH receptors. These findings suggest that the Cu2+ effects are mainly mediated through the GnRH receptors.  相似文献   

13.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This report describes the rapid effects of GnRH and an agonist [D-Ala6, des-Gly10] GnRH ethylamide (GnRHa) on polyphosphoinositide metabolism in rat granulosa cells. As indicated by the depletion of cellular levels of 32P-prelabeled triphosphoinositide (TPI) and diphosphoinositide (DPI), GnRHa rapidly stimulated the hydrolysis of TPI and DPI. The effect of GnRHa was maximal at the earliest time point examined (30 sec) and preceded GnRHa-induced increases in labeling of phosphatidylinositol. A specific GnRH antagonist had no effect on TPI or DPI levels, but prevented the polyphosphoinositide depletion induced by GnRH. LH did not stimulate depletion of 32P-polyphosphoinositides. The rapid and specific effects of GnRH on polyphosphoinositide depletion may represent an early and possibly initiating event in the action of GnRH.  相似文献   

15.
Estrogen activates protein kinase C in neurons: role in neuroprotection   总被引:10,自引:0,他引:10  
It has been previously demonstrated that estrogen can protect neurons from a variety of insults, including beta-amyloid (Abeta). Recent studies have shown that estrogen can rapidly modulate intracellular signaling pathways involved in cell survival. In particular, estrogen activates protein kinase C (PKC) in a variety of cell types. This enzyme plays a key role in many cellular events, including regulation of apoptosis. In this study, we show that 17beta-estradiol (E2) rapidly increases PKC activity in primary cultures of rat cerebrocortical neurons. A 1 h pre-treatment with E2 or phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, protects neurons against Abeta toxicity. Protection afforded by both PMA and E2 is blocked by pharmacological inhibitors of PKC. Further, depletion of PKC levels resulting from prolonged PMA exposure prevents subsequent E2 or PMA protection. Our results indicate that E2 activates PKC in neurons, and that PKC activation is an important step in estrogen protection against Abeta. These data provide new understanding into the mechanism(s) underlying estrogen neuroprotection, an action with therapeutic relevance to Alzheimer's disease and other age-related neurodegenerative disorders.  相似文献   

16.
17.
We studied the effect of activation of protein kinase C (PKC) by a phorbol ester on cAMP accumulation in fetal rat osteoblasts. Activation of PKC by phorbol 12-myristate 13-acetate (PMA) caused a potentiation of cAMP accumulation induced by parathyroid hormone (PTH), forskolin, and cholera toxin. The results suggest that the potentiating effect of PMA on PTH-induced cAMP accumulation was not due to an effect on the PTH-receptor nor to an effect on cAMP degradation, as the effect of PMA persisted in the presence of a phosphodiesterase inhibitor. Pretreatment of the cells with pertussis toxin did not prevent the action of PMA, indicating that PMA does not act via the inhibitory G-protein. PMA had a biphasic effect on prostaglandin E2 (PGE2)-induced cAMP accumulation; i.e., at concentrations greater than or equal to 10(-6) M, PMA potentiated the PGE2-induced cAMP response but PMA attenuated cAMP accumulation induced by concentrations of PGE2 less than or equal to 5.10(77) M. From our data we conclude that PKC can interact with a stimulated cAMP pathway in a stimulatory and inhibitory manner. Potentiation of cAMP accumulation is probably due to modification of the adenylate cyclase complex, whereas attenuation of stimulated cAMP accumulation appears to be due to an effect on a different site of the cAMP generating pathway, which may be specific to PGE2-induced cAMP accumulation.  相似文献   

18.
The role of insulin-like growth factor I (IGF-I) in the release of luteinizing hormone (LH) is unclear in ruminants. In the present study, the effects of IGF-I on the release of LH stimulated by gonadotropin-releasing hormone (GnRH) were examined in primary cultures of bovine anterior pituitary (AP) cells, and the interaction between estradiol-17beta (E(2)) and IGF-I was characterized. GnRH(100nM)-stimulated LH release from the cultured cells was increased (P<0.05) 12, 24 and 36h after addition of IGF-I (250ng/ml), with a maximum at 12h (48.4ng/ml media versus 35.4ng/ml media in controls). IGF-I at concentrations of 25, 250 and 500ng/ml increased the release by 18.7, 24.2 and 28.9%, respectively (P<0.05), when compared with controls (37.2ng/ml media). E(2) (10nM), IGF-I (250ng/ml) and combined treatment of E(2) plus IGF-I also induced significant increases in LH release (P<0.05). The amounts of LH release after treatment with E(2) alone was 37.3% greater than with IGF-I alone (39.0ng/ml media versus 28.4ng/ml media) (P<0.05). When E(2) and IGF-I were added together (45.6ng/ml media), the release of LH was significantly greater than with either E(2) alone or IGF-I alone (P<0.05). E(2) (10nM) significantly (P<0.05) increased the amount of GnRH bound to the cells by 51.6% when compared with controls, however, IGF-I (250ng/ml) failed to increase GnRH binding. These results show that IGF-I enhances GnRH-stimulated LH release without changing the number of GnRH receptors in cattle, and IGF-I interacts with E(2) to increase the response to GnRH.  相似文献   

19.
This study was undertaken to evaluate whether a link exists between the activation of protein kinase C (PKC), operation of Na(+)/H(+) exchanger (NHE), cell swelling and serotonin (5-HT) secretion in porcine platelets. Activation of platelets by thrombin or phorbol 12-myristate 13-acetate (PMA), a PKC activator, initiated a rapid rise in the activity of Na(+)/H(+) exchanger and secretion of 5-HT. Both thrombin- and PMA-evoked activation of Na(+)/H(+) exchanger was less pronounced in the presence of ethyl-isopropyl-amiloride (EIPA), an NHE inhibitor, and by GF 109203X, a PKC inhibitor. Monensin (simulating the action of NHE) caused a dose-dependent release of 5-HT that was not abolished by GF 109203X or EGTA. Lack of Na(+) in the suspending medium reduced thrombin-, PMA-, and monensin-evoked 5-HT secretion. GF 109203X nearly completely inhibited 5-HT release induced by PMA-, partly that induced by thrombin, and had no effect on 5-HT release induced by monensin. EIPA partly inhibited 5-HT release induced by thrombin and nearly totally that evoked by PMA. Electronic cell sizing measurements showed an increase in mean platelet volume upon treatment of cells with monensin, PMA or thrombin. The PMA- and thrombin-evoked rise in mean platelet volume was strongly reduced in the presence of EIPA. As judged by optical swelling assay monensin and PMA produced a rapid rise in platelet volume. The swelling elicited by PMA was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Hypoosmotically evoked platelet swelling did not affect platelet aggregation but significantly potentiated thrombin-evoked release of 5-HT and ATP. Taken together, these results show that in porcine platelets PKC may promote 5-HT secretion through the activation of NHE. It is hypothesized that enhanced Na(+)/H(+) antiport may result in a rise in cell membrane tension (due to cell swelling) which in turn facilitates fusion of secretory granules with the plasma membrane leading to 5-HT secretion.  相似文献   

20.
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号