首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobacco plants have been developed which constitutively express high levels of the biotin-binding proteins, avidin and streptavidin. These plants were phenotypically normal and produced fertile pollen and seeds. The transgene was expressed and its product located in the vacuoles of most cell types in the plants. Targeting was achieved by use of N-terminal vacuolar targeting sequences derived from potato proteinase inhibitors which are known to target constitutively to vacuoles in potato tubers and, under wound-induction, in tomato leaves. Avidin was located in protein body-like structures within the vacuole and transgene protein levels remained relatively constant throughout the lifetime of the leaf. We describe two chimeric constructs with similar levels of expression. One comprised a potato proteinase inhibitor I signal peptide cDNA sequence attached to an avidin cDNA and the second a potato proteinase inhibitor II signal peptide genomic sequence (including an intron) attached to a core streptavidin synthetic sequence. We were unable to regenerate plants when transformation used constructs lacking the targeting sequences. The highest levels observed (up to 1.5% of total leaf protein) confirm the vacuole as the organelle of choice for stable storage of plant-toxic transgene products. The efficient targeting of these proteins did not result in any measured changes in plant biotinmetabolism.  相似文献   

2.
Insect-resistant plants have been developed throughexpression of insecticidal proteins from Bacillusthuringiensis (Bt) in the early 1980s [1,2]. However, forcontrol of insect pests, it is necessary to increase theexpression of Bt protein overall or in specific plant tissues.To increase the expression level, synthetic Bt genes havebeen developed and used to produce transgenic plants[2–5]. A number of approaches have been taken to increasethe expression level of foreign proteins in transgeni…  相似文献   

3.
The modified Cry l Ac was expressed in transgenic tobacco plants. To allow secretion of the CrylAc protein into the intercellular space, the signal peptide sequence of potato proteinase inhibitor II (pinII) was N-terminally fused to the CrylAc encoding region. Expression of Cry 1 Ac in transgenic tobacco plants was assayed with ELISA. The results showed that pinII signal peptide sequence enhanced the expression of Cry lAc protein and led to the secretion of the Cry 1 Ac protein in transgenic tobacco plants. GFP gene was also fused to the signal peptide sequence and transformed to tobacco. The results of fluorescent detection showed that GFP had localized in the apoplast of transgenic plants.  相似文献   

4.
Transgenic potato plants expressing the gene of hepatitis B surface antigen (HBsAg) under the control of the double promoter of 35S RNA of cauliflower mosaic virus (CaMV 35SS) and the promoter of patatin gene of potato tubers have been obtained. Biochemical analysis of the plants was performed. The amount of HBsAg in leaves, microtubers, and tubers of transgenic potatoes growing in vitro and in vivo was 0.005-0.035% of the total soluble protein. HBsAg content reached 1 microg/g in potato tubers and was maximal in plants expressing the HBsAg gene under the control of CaMV 35SS promoter. In transgenic plants expressing HBsAg gene under the control of tuber-specific patatin promoter, HBsAg was found only in microtubers and tubers and was absent in leaves. Western blot analysis of HBsAg eluted from immunoaffinity protein A-Sepharose matrix has been performed. The molecular weight of HBsAg peptide was approximately 24 kD, which is in agreement with the size of the major protein of the envelope of hepatitis B virus. Using gel filtration, it was determined that the product of HBsAg gene expression in potato plants is converted into high-molecular-weight multimeric particles. Therefore, as well as in recombinant HBsAg-yeast cells, assembling of HBsAg monomers into immunogenic aggregates takes place in HBsAg-transgenic potato, which can be used as a source of recombinant vaccine against hepatitis B virus.  相似文献   

5.
The systemic induction of expression of the gene for proteinase inhibitor II after wounding different parts of potato (Solanum tuberosum L.) plants was analysed at the RNA level. Wounding of either leaves or tubers led to an induction of expression of this gene in non-wounded upper and lower leaves as well as in the upper stem segment, whereas no expression was observed in nonwounded roots or in the lower stem segment. The signal mediating the systemic induction in nonwounded tissue must therefore be able to move both acropetally and basipetally. The systemic wound response is specific for the expression of the proteinase-inhibitor-II gene as no influence was observed for the expression of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase and the tuber storage protein patatin which were examined in parallel with the proteinase-inhibitor-II gene.Abbreviation ssRubisco small subunit of ribulose-1,5-bis-phosphate carboxylase  相似文献   

6.
A chimeric gene consisting of 1.3 kb of the 5' regulatory region of a member of the potato proteinase inhibitor II gene family, the coding region of the bacterial β-glucuronidase (GUS) gene and 260 bp of the proteinase inhibitor II 3'-untranslated region containing the poly(A) addition site was introduced into potato and tobacco by Agrobacterium tumefaciens mediated transformation. Analysis of transgenic plants demonstrates systemic, wound-inducible expression of this gene in stem and leaves of potato and tobacco. Constitutive expression was found in stolons and tubers of non-wounded potato plants. Histochemical experiments based on the enzymatic activity of the GUS protein indicate an association of the proteinase inhibitor II promoter activity with vascular tissue in wounded as well as in systemically induced non-wounded leaves, petioles, potato stems and in developing tubers. These data prove that one single member of the proteinase inhibitor II gene family contains cis-active elements, which are able to respond to both developmental and environmental signals. Furthermore they support the hypothesis of an inducing signal (previously called proteinase inhibitor inducing factor), which is released at the wound site and subsequently transported to non-wounded parts of the plant via the vascular system from where it is released to the surrounding tissue.  相似文献   

7.
Molecular cloning and analysis of four potato tuber mRNAs   总被引:15,自引:0,他引:15  
Tuberization in potato is a complex developmental process involving the expression of a specific set of genes leading to the synthesis of tuber proteins. We here report the cloning and analysis of mRNAs encoding tuber proteins. From a potato tuber cDNA library four different recombinants were isolated which hybridized predominantly with tuber mRNAs. Northern blot hybridization experiments showed that three of them, pPATB2, p303 and p340, can be regarded as tuber-specific while the fourth, p322, hybridizes to tuber and stem mRNA. Hybrid-selected in vitro translation and nucleotide sequence analysis indicate that pPATB2 and p303 represent patatin and the proteinase inhibitor II mRNA respectively. Recombinant p322 represents an mRNA encoding a polypeptide having homology with the soybean Bowman-Birk proteinase inhibitor while p340 represents an mRNA encoding a polypeptide showing homology with the winged bean Kunitz trypsin inhibitor. In total, these four polypeptides constitute approximately 50% of the soluble tuber protein. Using Southern blot analysis of potato DNA we estimate that these mRNAs are encoded by small multigene families.  相似文献   

8.
In whole intact potato (Solanum tuberosum L.) plants, the gene families of class-I patatin and proteinase inhibitor II (Pin 2) are constitutively expressed in the tubers. However, they are also induced in detached potato leaves in the presence of light. To further characterize this light action, the detached leaves were subjected to monochromatic light of different wavelengths and to darkness in the presence of metabolites and inhibitors. Patatin genes could be induced by the simultaneous application of sucrose (sugars) and glutamine in darkness. Neither of these metabolites was active when supplied alone. When photosynthesis was blocked by 3-(3,4-Di-chlorophenyl)-1, 1-dimethylurea (DCMU) in the light, patatin genes were not expressed; however, the inhibition was overcome in the presence of sucrose. This indicates that besides its role in photosynthetic carbohydrate production, light may be essential for the supply of amino acids (or reduced nitrogen). Unlike patatin, Pin 2 genes were, to a small extent, also active in darkness, and sucrose weakly enhanced this expression. However, DCMU did not affect Pin 2 expression in the light. Both abscisic acid and methyl jasmonate strongly promoted the accumulation of Pin 2 mRNA independent of the light conditions, indicating that the gene family is probably under hormonal control. The phytohormones did not affect patatin gene expression. Inhibitors of cytosolic (cycloheximide) and organellar (chloramphenicol) translation had opposite effects on the two gene families. Careful evaluation of the inhibitors' action indicates that protein synthesis (cytosol) is required for the expression of Pin 2 genes but not for the patatin genes. These results clearly demonstrate that, although in situ both gene families are constitutively expressed in the same plant organ (tuber) in intact plants, their expression is mediated by different factors.Abbreviations ABA cis-abscisic acid - DCMU 3-(3,4-dichlorphenyl)-1,1-dimethylurea - GUS -glucuronidase activity - MeJA methyl jasmonate - Pin 2 proteinase inhibitor II We thank Beate Küsgen and Regina Breitfeld for the greenhouse work. This work was supported by a grant from the Bundesministerium für Forschung und Technologie.  相似文献   

9.
10.
A member of the potato proteinase inhibitor II (PPI-II) gene family under the control of the cauliflower mosaic virus 35S promoter has been introduced into tobacco (Nicotiana tabacum). Purification of the PPI-II protein that accumulates in transgenic tobacco has confirmed that the N-terminal signal sequence is removed and that the inhibitor accumulates as a protein of the expected size (21 kD). However, a smaller peptide of approximately 5.4 kD has also been identified as a foreign gene product in transgenic tobacco plants. This peptide is recognized by an anti-PPI-II antibody, inhibits the serine proteinase chymotrypsin, and is not observed in nontransgenic tobacco. Furthermore, amino acid sequencing demonstrates that the peptide is identical to a lower molecular weight chymotrypsin inhibitor found in potato tubers and designated as potato chymotrypsin inhibitor I (PCI-I). Together, these data confirm that, as postulated to occur in potato, PCI-I does arise from the full-length PPI-II protein by posttranslational processing. The use of transgenic tobacco represents an ideal system with which to determine the precise mechanism by which this protein modification occurs.  相似文献   

11.
Summary Two cDNA clones containing the complete coding region of a developmentally controlled (tuber-specific) as well as environmentally inducible (wound-inducible) gene from potato (Solanum tuberosum) have been sequenced. The open reading frame codes for 154 amino acids. Its sequence is highly homologous to the proteinase inhibitor II from tomato, indicating that the cDNA's encode the corresponding proteinase inhibitor II of potato. In addition the putative potato proteinase inhibitor II contains a sequence which is completely homologous with that of another small peptide proteinase inhibitor from potato, called PCI-I. Evidence is presented that this small peptide is probably derived from the proteinase inhibitor II by posttranslational processing.Northern type experiments using RNA from wounded and nonwounded leaves demonstrate that RNA homologous to the putative proteinase inhibitor II cDNA's accumulates in leaves as a consequence of wounding, whereas normally the expression of this gene is under strict developmental control, since it is detected only in tubers of potato (Rosahl et al. 1986). In addition the induction of this gene in leaves can also be achieved by the addition of different polysaccharides such as poly galacturonic acid or chitosan. In contrast to the induction of its expression by wounding in leaves, wounding of tubers results in a disappearance of the proteinase II inhibitor m-RNA from these organs.  相似文献   

12.
The influence of sugars on the development of oxidative stress induced by hypothermia was investigated in the leaves of two genotypes of potato (Solanum tuberosum L.) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. We used wild-type plants of potato, cv. Désirée, and potato plants expressing a yeast invertase gene under the control of the B33 class I patatin promoter and carrying a sequence of proteinase inhibitor II leader peptide for the apoplastic enzyme localization. At temperature of 22°C optimal for growth, expression of the yeast invertase gene in the leaves of transformed plants brought about a modification in the carbohydrate metabolism manifested in the activation of acid forms of invertase and accumulation of intracellular sugars (predominantly of sucrose because of its resynthesis). The exposure of plants to light under prolonged hypothermia (5°C, 6 days) activated all the forms of invertase (predominantly of acid invertase) and induced accumulation of sugars. In the leaves of potato expressing the yeast invertase gene, these processes were more intense. Under chilling, superoxide dismutase activity and the rate of lipid peroxidation in the leaves of investigated potato genotypes depended on the level of accumulated intracellular sugars. It was concluded that sugars play an important role as stabilizers of cellular membranes and scavengers of reactive oxygen species decelerating the processes of free radical oxidation of biomolecules upon the development of oxidative stress induced by hypothermia.  相似文献   

13.
Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.  相似文献   

14.
15.
Binary vectors pPATIs (with partial signal sequence) and pPATI (without signal sequence) were constructed by fusing 1.4 kb 5' flanking regions of Class I patatin gene with GUS. Transient GUS expression was observed in in vitro tuber slices bombarded with pPATI. These constructs were then introduced into potato (cv. Desiree) via Agrobacterium tumefaciens transformation. Transgenic potato plants were confirmed by X-Gluc staining and PCR. Using in vitro tuberization system, GUS activities were assayed by fluorescence. It was shown that, in plants transformed with PATI-GUS, GUS specific activities were about 10-20 fold higher in tubers than in stems. Increased sucrose concentration could not induce PATI-GUS expression, but light enhanced PATI-GUS expression in cultured shoots.  相似文献   

16.
A highly efficient and synchronousin vitro tuberization system is described. One-node stem pieces from potato (Solanum tuberosum cv. Bintje) plants grown under short day-light conditions containing an axillary bud were cultured in the dark on a tuber-inducing medium. After 5 or 6 days all axillary buds started to develop tubers. To study gene expression during tuber development, RNA isolated from tuberizing axillary buds was used for bothin vitro translation and northern blot hybridizations. The genes encoding the proteinase inhibitors I and II (PI-I and PI-II), a Kunitz-and a Bowman-Birk-type proteinase inhibitor were already expressed in uninduced axillary buds. The length of the day-light conditions differently influenced the expression level of the individual genes. In addition, the expression of each of these genes changed specifically during the development of the axillary bud to tuber. In contrast to the expression of these proteinase inhibitor genes, patatin gene expression was only detectable from the day tuberization was manifested as a radial expansion of the axillary bud.These results are discussed with respect to the regulation of the expression of the genes studied in relation to the regulation of tuber development.  相似文献   

17.
The correct compartmentation of proteins to the endomembrane system, mitochondria, or chloroplasts requires an amino-terminal signal peptide. The major tuber protein of potato, patatin, has a signal peptide in common with many other plant storage proteins. When the putative signal peptide of patatin was fused to the bacterial reporter protein beta-glucuronidase, the fusion proteins were translocated to the endoplasmic reticulum in planta and in vitro. In addition, translocated beta-glucuronidase was modified by glycosylation, and the signal peptide was correctly processed. In the presence of an inhibitor of glycosylation, tunicamycin, the enzymatically active form of beta-glucuronidase was assembled in the endoplasmic reticulum. This is the first report of targeting a cytoplasmic protein to the endoplasmic reticulum of plants using a signal peptide.  相似文献   

18.
将1.4kb Class I patatin基因的5′侧翼区与GUS基因融合,构建了双元表达载体pPATIs(含patatin部分信号顺序)和pPATI(不含patatin部分信号顺序)。pPATI通过基因枪介导在块茎切片中获得了瞬间表达。以上建构物通过农杆菌介导转入了马铃薯品种Desiree。X-Gluc染色(PATIs不能染色)及PCR结果证实已获得转基因植株。利用离体块茎诱导系统,GUS的表达进一步用荧光进行定量检测,结果显示,PATI-GUS的转基因植株中GUS比活性均以块茎明显高于茎段,达10-20倍。蔗糖浓度的升高,PATI-GUS植株中的GUS比活性无明显变化,与前人报道有不同。此外,光照促进PATI-GUS的表达。  相似文献   

19.
The interaction of a variety of aspartic proteinases with a recombinant tomato protein produced in Pichia pastoris was investigated. Only human cathepsin D and, even more potently, proteinase A from Saccharomyces cerevisiae were inhibited. The tomato polypeptide has >80% sequence identity to a previously reported potato inhibitor of cathepsin D. Re-evaluation of the potato inhibitor revealed that it too was more potent (>20-fold) towards yeast proteinase A than cathepsin D and so might be renamed the potato inhibitor of proteinase A. The potency towards yeast proteinase A may reflect a similarity between this fungal enzyme and aspartic proteinases produced by fungal pathogens which attack tomato and/or potatoes.  相似文献   

20.
Patatin is a family of lipid acyl hydrolases that accounts for 30 to 40% of the total soluble protein in potato tubers. Class-I patatin genes encode 98 to 99% of the patatin mRNA in tubers, but are not normally expressed in other tissues. They are not totally tuber-specific; however, since they can be induced to express at high levels in other tissues under conditions of sink limitation or in explants cultured on medium containing elevated levels of sucrose. To examine the evolution of the mechanisms that regulate patatin gene expression, we introduced a chimeric patatin--glucuronidase (GUS) gene containing 2.5 kb of 5 flanking sequence from the Class-I potato patatin gene PS20 into tobacco plants. The construct was not expressed at significant levels in leaves of juvenile plants or plantlets cultured in vitro, but was expressed at high levels in explants cultured on medium containing 0.3 to 0.4 M sucrose. While there were differences in the expression of the chimeric gene between transgenic tobacco and potato plants, the pattern of sucrose induction was very similar. These results suggest that the mechanism that controls patatin gene expression in potato tubers evolved from a widely distributed mechanism in which gene expression is regulated by the level of available photosynthate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号