首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 39 kDa protein, known as the viral spike protein or one of the protein components forming the viral spike, encoded by genomic segment 9 (S9) of Rice Ragged Stunt Oryzavirus (RRSV) was obtained by enzymatic cleavage of a fusion protein expressed by S9 cDNA in bacteria with proteinase factor Xa. The feeding of an insect vector — the rice brown planthopper (Nilaparvata lugens) on purified expressed 39 kDa protein before the inoculation of the insects on diseased rice plants could completely inhibit the vector transmission ability of the insect. The presence of a 32 kDa insect cell membrane protein which could bind to 39 kDa viral spike protein indicated that the inhibition might be resulted from the competition in the interactions of 39 kDa protein and intact virus with the virus receptors on the insect cells. These results suggest that the spike proteins of the plant reoviruses are essential for the virus infection in the interactions of virus, insect vectors and host plants. These results are also useful in the practical applications.  相似文献   

2.
水稻齿叶矮缩病毒是一种以水稻为侵害寄主的植物呼肠孤病毒 ,其基因组 1 0条dsRNA编码的蛋白质产物的功能除S9外的大部分还未阐明。报道了该病毒菲律宾分离株S8的开放阅读框序列 ,在大肠杆菌中表达和纯化出了其 6 7kD的蛋白质产物 ,并进一步研究了该产物的功能。实验结果表明 ,S8的蛋白质产物是病毒的一种主要结构蛋白质 ,在体外具有自剪切活性和自聚集性质 ,并推测可能是病毒的内层衣壳蛋白  相似文献   

3.
4.
5.
Exposure of rice (Oryza sativa L.) seedlings to a high temperature (42°C) for 24 h resulted in a significant increase in tolerance to drought stress. To try to determine the mechanisms of acquisition of tolerance to drought stress by heat shock, the rice small heat-shock protein gene, sHSP17.7, the product of which was shown to act as molecular chaperones in vitro and in vivo in our previous study, was overexpressed in the rice cultivar “Hoshinoyume”. Western and Northern blot analyses showed higher expression levels of sHSP17.7 protein in three transgenic lines than in one transgenic line. Drought tolerance was assessed in these transgenic lines and wild-type plants by withholding water for 6 days for evaluation of the ability of plants to continue growth after water-stress treatments. Although no significant difference was found in water potential of seedlings between transgenic lines and wild-type plants at the end of drought treatments, only transgenic seedlings with higher expression levels of sHSP17.7 protein could regrow after rewatering. Similar results were observed in survival rates after treatments with 30% polyethylene glycol (PEG) 3640 for 3 days. These results suggest that overproduction of sHSP17.7 could increase drought tolerance in transgenic rice seedlings.  相似文献   

6.
Transgenic plants have become attractive as bioreactors to produce heterologous proteins that can be developed as edible vaccines. In the present study, transgenic rice expressing the envelope protein (E) of Japanese encephalitis virus (JEV), under the control of a dual cauliflower mosaic virus (CaMV 35S) promoter, was generated by Agrobacterium-mediated transformation. Southern blot, Northern blot, Western blot and ELISA analyses confirmed that the E gene was integrated into transgenic rice and was expressed in the leaves at levels of 1.1-1.9 μg/mg of total soluble protein. After intraperitoneal immunization of mice with crude protein extracts from transgenic rice plants, JEV-specific neutralizing antibody could be detected. Moreover, E-specific mucosal immune responses could be detected in mice after oral immunization with protein extracts from transgenic rice plants. These results show the potential of using a transgenic rice-based expression system as an alternative bioreactor for JEV subunit vaccine.  相似文献   

7.
In order to develop a high-level expression system in transgenic rice, we inserted a synthetic gene (sgfp) encoding a modified form of the green fluorescent protein (GFP) into two expression vectors, Act1-sgfp for an untargeted and rbcS-Tp-sgfp for a chloroplast targeted expression. Several fertile transgenic rice plants were produced by the Agrobacterium-mediated method. Confocal microscopic analyses demonstrated that, in cells expressing the Act1-sgfp, GFP fluorescence was localized within the cytoplasm and nucleoplasm whereas, in cells expressing the rbcS-Tp-sgfp fusion gene, the fluorescence was specifically targeted to chloroplasts and non-green plastids. The levels of sgfp expression were about 0.5% of the total soluble protein in mature leaf tissues of the Act1-sgfp transformed lines. In contrast, expression levels were markedly increased in mature leaf tissues of the rbcS-Tp-sgfp transformed lines, yielding about 10% of the total soluble protein. N-terminal sequencing of the localized GFPs revealed that the Tp-GFP fusion protein was correctly processed during import to non-green plastids, as well as to chloroplasts. Thus, our results demonstrate that GFP can be produced at high levels and localized in specific subcellular spaces of transgenic plants, providing a high-level expression system for general use in rice, an agronomically important cereal.  相似文献   

8.
Summary Hydrolytic activities of leaf extracts from normal and transgenic plants, with (+ MP) and without (-MP) the movement protein of tobacco mosaic virus, were examined. In the + MP transgenic plants, as compared with non-transgenic and — MP plants, higher hydrolytic activities were found on the following substrates: bis-(nitrophenyl)-phosphate (BPNPP, phosphodiesterase), p-nitrophenyl-(phenyl)-phosphate (PNPPP, nucleotidephosphodiesterase) and thymidine-3-monophosphate p-nitrophenyl ester (T3MPP; 3nucleotide phosphodiesterase.) The + MP plant lines, as compared with other transgenic plants, exhibited higher nucleotide-phosphodiesterase activity in the soluble as well as in the membrane fraction. Substrate concentration kinetic studies revealed the presence of a nucleotide-phospho-diesterase with a high substrate affinity in the +MP extracts in addition to the enzyme with a relatively low substrate affinity present also in the — MP transgenic plants. This high affinity enzyme could be removed from the soluble fraction by precipitation with anti-MP serum, indicating its possible association with the movement protein.  相似文献   

9.
Summary Rice is one of the most important crops in the world with 35% of the total population (over two billion people) depending on it as their source of food. It is therefore essential to develop efficient methods for the transformation and regeneration of rice plants in order to delineate the exact regulatory sequences responsible for gene expression and to transfer beneficial genes into this plant. Here, for the first time, we present definitive evidence for the regeneration of a large number of transgenic rice plants after introduction of the bacterial -glucuronidase gene into rice protoplasts. The presence of integrated copies of this gene was detected in the genome of transgenic plants by DNA hybridization analysis. Furthermore, under the control of regulatory regions from a maize alcohol dehydrogenase sequence, -glucuronidase gene expression was detected in the roots of transgenic plants. This expression was stimulated up to six fold under anaerobic conditions.  相似文献   

10.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

11.
利用转基因植物作为生物反应器可以表达重组蛋白、生产外源蛋白质,也可以成为动物疫苗的廉价生产系统。以编码新城疫病毒融合蛋白(NDV-F)的基因为外源基因,以玉米泛素蛋白(Ubi)启动子为启动子,以潮霉素磷酸转移酶(HPT)基因作为选择标记基因,β-半乳糖苷酸酶(GUS)基因作为报告基因构建了适宜于农杆菌介导转化水稻的表达质粒pUNDV,并通过农杆菌介导转化水稻,获得了多株转基因植株。通过PCR分析和GUS活性检测,证实含有NDV-F基因的T-DNA已整合到水稻核基因组中,为研制廉价安全的转基因水稻新城疫基因工程疫苗奠定了基础。  相似文献   

12.
13.
 The rgp1 gene, which encodes a small GTP-binding protein from rice, was introduced into rice protoplasts by electroporation. Transformed protoplasts were cultured on liquid protoplast-culture medium for 1 month, and then cells that had proliferated were transferred to a selection medium that contained 50 mg/l hygromycin B. Among 50 colonies that were selected and transferred to regeneration medium, 3 colonies generated shoots. However, two of the three shoots failed to form roots and ceased growing. A single regenerated shoot that formed roots was planted in soil and transferred to a greenhouse. Southern hybridization showed that the regenerated plant harbored a single copy of the introduced gene. The transformant (T0) plant was shorter than the controls, it developed three times as many tillers as controls, it developed three times as many tillers as control plants but it produced mostly sterile seeds. In a test of hygromycin resistances, viable seeds segregated into resistant and sensitive seedings at a ratio of approximately 1 : 3. The progeny (T1) plants were short with many tillers, and some produced seeds normally. The T2 seedlings grew more rapidly than control seedlings for the first 28 days after germination, but control plants subsequently outgrew the T2 plants. Northern blotting analysis revealed that the rgp1 gene in T2 plants was expressed consitutively throughout all developmental stages. The results suggest that the observed phenotypic changes were due to expression of the exogenous rgp1 gene. Received: 21 September 1997/Accepted: 31 March 1998  相似文献   

14.
 The coding region of the eighth largest segment (S8) of the rice dwarf virus (RDV) was obtained from a RDV Fujian isolate. It was then cloned into pTrcHisA for expression in E. coli and into vector pE3 for plant transformation. By using callus derived from mature rice embryos as the target tissue, we obtained regenerated rice plants after bombardment of the former with plasmid pE3R8 containing the RDV S8 gene and the marker gene neomycin phosphotransferase (NPT II). Southern blotting confirmed the integration of the RDV S8 gene into the rice genome. The expression of the outer coat protein in both E. coli and rice plants was confirmed by western blotting. The recovery of transgenic rice plants expressing S8 gene is an important step towards studying the function of the RDV genes and obtaining RDV-resistant rice plants. Received: 1 March 1996 / Accepted: 2 August 1996  相似文献   

15.
Oh SJ  Jeong JS  Kim EH  Yi NR  Yi SI  Jang IC  Kim YS  Suh SC  Nahm BH  Kim JK 《Plant cell reports》2005,24(3):145-154
Matrix-attachment regions (MARs) may function as domain boundaries and partition chromosomes into independently regulated units. In this study, BP-MAR, a 1.3-kb upstream fragment of the 5MAR flanking the chicken lysozyme locus, was tested for its effects on integration and expression of transgenes in transgenic rice plants. Using the Agrobacterium-mediated method, we transformed rice with nine different constructs containing seven and six different promoters and coding sequences, respectively. Genomic Southern blot analyses of 357 independent transgenic lines revealed that in the presence of BP-MAR, 57% of the lines contained a single copy of the transgene, whereas in its absence, only 20% of the lines contained a single copy of the transgene. RNA gel-blot and immunoblot experiments demonstrated that in the presence of BP-MAR, transgene expression levels were similar among different lines. These data were in direct contrast to those derived from transgenes expressed in the absence of BP-MAR, which varied markedly with the chromosomal integration site . Thus, it can be concluded that BP-MAR significantly reduces the variability in transgene expression between independent transformants. Moreover, the presence of BP-MAR appears to confer a copy number-dependent increase in transgene expression, although it does not increase expression levels of individual transgenes. These data contrast with results previously obtained with various MARs that increased expression levels of transgene significantly. Therefore, we conclude that the incorporation of BP-MAR sequences into the design of transformation vectors can minimize position effects and regulate transgene expression in a copy number-dependent way.S.-J. Oh, J.S. Jeong, E.-H. Kim, N.R. Yi and S.-I. Yi contributed equally to the paper  相似文献   

16.
在室内对转基因水稻KMD1中的Cry1Ab毒蛋白经食物链在几种主要害虫及其捕食性天敌体内的积累进行了研究。结果表明: 无论是水稻孕穗期还是成熟期,二化螟Chilo suppressalis连续取食KMD1或取食KMD1.36 h后移至对照品种秀水11上取食不同时间后,幼虫体内的Cry1Ab含量均随取食时间延长逐渐下降。稻眼蝶 Mycalesis gotama幼虫连续取食KMD1或在KMD1上取食两天后移至秀水11上继续取食不同时间,体内的Cry1Ab含量也都随取食时间延长而下降,但下降速度较二化螟更快。取食KMD1的二化螟和稻眼蝶幼虫的粪便中均检测到较高浓度的Cry1Ab,对照组中均无Cry1Ab。取食KMD1的二化螟幼虫血淋巴中检测到Cry1Ab,含量为3.5 ng/g。取食KMD1的褐飞虱 Nilaparvata lugens、稻蚜Sitobion avenae以及饲喂取食过KMD1的二化螟或稻眼蝶幼虫的拟水狼蛛Pirata subpiraticus体内都含有一定浓度的Cry1Ab,其中,拟水狼蛛体内的CrylAb含量以饲喂取食KMD1稻眼蝶幼虫的含量最高,约为饲喂取食KMD1二化螟幼虫的60倍。这些结果表明Cry1Ab可以沿水稻害虫天敌食物链传递。  相似文献   

17.
The non-structural protein Pns12 of Rice dwarf virus is one of the early proteins expressed in cultured insect cells, and it is one of 12 proteins that initiate the formation of the viroplasm, the putative site of viral replication. Pns4 is also a non-structural protein, visible as minitubules after nucleation of the viroplasm. We introduced Pns12- and Pns4-specific RNA interference (RNAi) constructs into rice plants. The resultant transgenic plants accumulated short interfering RNAs specific to the constructs. The progeny of rice plants with Pns12-specific RNAi constructs, after self-fertilization, were strongly resistant to viral infection. By contrast, resistance was less apparent in the case of rice plants with Pns4-specific RNAi constructs, and delayed symptoms appeared in some plants of each line. Our results suggest that interference with the expression of a protein that is critical for viral replication, such as the viroplasm matrix protein Pns12, might be a practical and effective way to control viral infection in crop plants.  相似文献   

18.
19.
Feng L  Wang K  Li Y  Tan Y  Kong J  Li H  Li Y  Zhu Y 《Plant cell reports》2007,26(9):1635-1646
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants 9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants. The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fraction and thus enhanced the tolerance of CO2 assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method for enhancing high temperature tolerance of plants.  相似文献   

20.
Exposure of rice (Oryza sativa L.) seedlings to a high temperature (42°C) for 24 h resulted in a significant increase in resistance to UV-B damage. UV-B resistance was enhanced in parallel with the period of heat treatment. sHSP17.7 was isolated from heated rice seedlings, and the influence of rice sHSP17.7 expression on the viability of E. coli under heat-shock conditions was assessed. After heating, the survival rate of sHSP17.7 cells was 2-fold higher than that of the control cells. The molecular chaperone activity of sHSP17.7 was investigated using catalase as a substrate. Recombinant sHSP17.7 had heat-stable chaperone properties that were capable of protecting stressed catalase from precipitation. sHSP17.7 was overexpressed in the rice cultivar Hoshinoyume, by Agrobacterium-mediated transformation, under the control of a CaMV 35S promoter. Transgenic rice plants with increased levels of sHSP17.7 protein exhibited significantly increased thermotolerance compared to untransformed control plants. The level of increased thermotolerance was correlated with the level of increased sHSP17.7 protein in the transgenic plants. The transgenic rice plant with the highest constitutive expression of sHSP17.7 had significantly greater resistance to UV-B stress than untransformed control plants. Increase in the degree of resistance of transgenic plants to UV-B was accompanied by an increase in production of sHSP17.7 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号