首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TheNor-loci of polyploid wheats and their putative diploid progenitor species were assayed by probing isolated nuclear DNA with ribosomal DNA spacer sequences (spacer rDNA sequences, isolated by cloning), from theNor-loci of genomes B (Triticum aestivum), G (T. timopheevi), B (syn. S,T. speltoides), A (T. monococcum) and V (Dasypyrum villosum). DNA samples for analysis were digested with the restriction endonuclease Taq 1 and assayed by DNA-DNA hybridization under standard (37°C) and high stringency (64°C) conditions. The assay procedure emphasized differences between the divergent spacer sequences of the polyploid species and allowed relative homologies to the respective sequences in diploid species to be established. — The studies indicated thatT. timopheevi andT. speltoides contain different sets of spacer rDNA sequences which were readily distinguishable and, in the case ofT. timopheevi, assigned toNor-loci on different chromosomes. This contrast with the spacer rDNA sequences of the majorNor-loci on chromosomes 1 B and 6 B inT. aestivum, which were difficult to distinguish and were deduced to contain very similar sequences. Among the diploid progenitor species only the spacer rDNA fromT. speltoides shared close homology with polyploid wheat species. OneNor-locus inT. timopheevi (on chromosome 6 G) did not show close homology with any of the rDNA spacer probes available. — The data suggestsT. speltoides was the origin of someNor-loci for both theT. timopheevi andT. turgidum lines of tetraploid wheats. The possibility that the 6GNor-locus inT. timopheevi may have derived from an unknown diploid species by introgressive hybridization is discussed. The spacer rDNA sequence probe fromT. monococcum shared good homology with some accessions ofD. villosum and a line ofT. dicoccoides; the implications of this finding for evolution of present-day wheats are discussed.  相似文献   

2.
A digoxigenin-labelled 5S rDNA probe (pTa-794) and a rhodamine-labelled 18S-5.8S-25S rDNA probe (pTa71) were used for double-target in-situ hybridization to root-tip metaphase, prophase and interphase chromosomes of cultivated beet,Beta vulgaris L. After in-situ hybridization with the 18S-5.8S-25S rDNA probe, one major pair of sites was detected which corresponded to the secondary constriction at the end of the short arm of chromosome 1. The two rDNA chromosomes were often associated and the loci only contracted in late metaphase. In the majority of the metaphase plates analyzed, we found a single additional minor hybridization site with pTa71. One pair of 5S rRNA gene clusters was localized near the centromere on the short arm of one of the three largest chromosomes which does not carry the 18S-5.8S-25S genes. Because of the difficulties in distinguishing the very similarly-sizedB. vulgaris chromosomes in metaphase preparations, the 5S and the 18S-5.8S-25S rRNA genes can be used as markers for chromosome identification. TwoXbaI fragments (pXV1 and pXV2), comprising the 5S ribosomal RNA gene and the adjacent intergenic spacer, were isolated. The two 5S rDNA repeats were 349 bp and 351 bp long, showing considerable sequence variation in the intergenic spacer. The use of fluorescent in-situ hybridization, complemented by molecular data, for gene mapping and for integrating genetic and physical maps of beet species is discussed.  相似文献   

3.
Numerous studies on Oenothera species have been investigated for the physiological and ecological characteristics. However, no such an information based on molecular cytogenetic has yet been introduced, in turn, is very essential for identifying sequence polymorphisms of rRNA genes with their loci on mitotic phases for further biological researches. In this study, sequence variations of rRNA genes in Oenothera odorata and O. laciniata were examined to identify informative factors as unique or repeat sequences in intra- and inter-specific variations. Intra-specific variation revealed that the sequences of the rRNA genes including the spacer regions were highly conserved revealing only a few variations. From the inter-specific variation, spacer regions of species were completely different as (1) non-homologous sequences in NTS and (2) different type repeat sequences in ITS 1, 2 and 5.8S rRNA, whereas the remaining coding regions were highly conserved. FISH was carried out on mitotic phases using the 5S rDNA of the analyzed sequences. From the interphase and metaphase chromosomes of the examined species, two loci of 5S rDNA in O. odorata and four loci in O. laciniata were confirmed on the telomeric region of the short arm. Due to the small size and unclear centromere of the chromosomes, karyotype could not be completed. However, we confirmed that the chromosomes are organized by meta- and acrocentric chromosomes and the chromosomes with identified loci were assumed to be paired by the location of loci at the telomeric region on the short arm with relative lengths.  相似文献   

4.
Summary Progenies of H. spontaneum plants regenerated from immature embryo derived calli were analysed for somaclonal variation on the following traits: (1) organization of the intergenic spacer of the rRNA genes; (2) B and C hordein pattern on SDS-PAGE; (3) genomic organization of the B and C hordein coding sequences; (4) mitochondrial DNA organization assayed by hybridization of Southern blots of total DNA with mitochondrial coding genes; (5) cytology. One out of twelve progeny plants was characterized as variant for two traits: (a) a loss of 1.8 and 2.5 kb Taq I intergenic rDNA spacer fragments and (b) a variant pattern of hordeins on 1-D SDS-PAGE. No numerical or structural chromosome variation was detected among the control plants therefore it is assumed that the variation was caused by the in vitro culture and transmitted, through sexual reproduction, to the analysed progeny.  相似文献   

5.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

6.
The origin and activity of 45S rDNA located on micro B chromosomes of the daisy Brachycome dichromosomatica were analysed. The internal transcribed spacer 2 (ITS2) of the 45S rRNA gene was sequenced for micro B, large B, and A chromosomes of B. dichromosomatica cytodeme A2, and conserved differences were identified between sequences originating from A and both types of B chromosomes. Phylogenetic analysis did not identify a species containing an ITS2 sequence more similar to either of the B chromosome sequences than the B. dichromosomatica A chromosome sequences. Thus, an origin of the B chromosomes from A chromosomes at a time prior to the divergence of the 4 cytodemes of B. dichromosomatica is suggested. The frequent (70%) nucleolar non-association of micro B chromosomes suggests inactivity of micro B 45S rDNA.  相似文献   

7.
Organization of ribosomal genes in Paramecium tetraurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The macronuclear ribosomal DNA (rDNA) of the ciliated protozoan Paramecium tetraurelia (stock 51) was analyzed by digestion with restriction endonucleases. The fragments which contained ribosomal RNA (rRNA) coding sequences and spacer sequences were identified. The spacer sequences exhibited some heterogeneity in size. The genes coding for 5.8S RNA, but not for 5S RNA, are linked to the 17S and 25S rRNA genes. Complementary RNA, synthesized from rDNA of stock 51, was hybridized with restriction digests of whole cell DNA from six other allopatric stocks of this species. The restriction patterns of the rDNA from these seven stocks were, in general, very similar, and the sizes of the coding sequences were identical in all seven stocks. Only the restriction pattern of rDNA from stock 127 differed significantly from that of stock 51. The rDNA from stock 127 was isolated and characterized, and with the exception of the restriction pattern of its spacer, it resembled the rDNA from stock 51. It is concluded that the rDNA repeat in Paramecium, including the spacer, has, in general, been conserved during the course of evolution. It is suggested that in some species, even in the absence of genetic exchange among geographically separated populations, selection pressure may act to conserve spacers of tandemly repeated rDNA. The conservation may be related to the number of rDNA copies in the germinal nucleus.  相似文献   

8.
9.
Summary In this work we have used a method that allows a rapid and precise quantification of rRNA genes. With the purpose of examining small numbers of rRNA genes, we used Drosophila melanogaster embryos which are inviable because their sex chromosomes carry extensive rDNA deletions. Two of the mutants, B s Ybb 1 and Ybb l , appear to be completely devoid of rDNA. The third, Ybb -, contains no more than five genes.Work supported by C.N.R. contract No. 82-2100 and Progetto Finalizzato C.N.R. Ingegneria Genetica No. 83-01007-51  相似文献   

10.
Different ribosomal RNA (5S and 25S) genes were investigated simultaneously by fluorescence in situ hybridization (FISH) in Sinapis alba, Raphanus sativus and Brassica napus. The chromosomes of S. alba carried four 5S and six 25S gene sites, and those of R. sativus four sites of each gene, respectively. These two species have one chromosome pair with both rDNA genes; the two are closely located on a short arm of S. alba, while in R. sativus one is distal on the short arm (5S) and the other more proximal on the long arm (25S). In B. napus we have confirmed 12sites of 25S rDNA. The detection of 5S rDNA genes revealed 14 signals on 12 chromosomes. Of these, six chromosomes had signals for both rDNA genes. The FISH with 5S rDNA probes detected two sites closely adjacent in four chromosomes of B napus. These results are discussed in relation to a probable homoeologous chromosome pair in B. oleracea. Received: 20 July 1999 / Accepted: 8 October 1999  相似文献   

11.
Ribosomal genes have been localized on mitotic and lampbrush chromosomes of 20 specimens of Triturus vulgaris meridionalis by in situ hybridization with 3H 18S+28S rRNA. The results may be summarized as follows: 1) each individual shows positive in situ hybridization at the nucleolus organizing region (NOR) on chromosome XI; 2) in addition, many specimens exhibit a positive reaction in chromosomal sites other than the NOR (additional ribosomal sites); 3) the chromosomal distribution of the additional sites appears to be identical in different tissues from the same specimen and to follow a specific individual pattern; 4) the additional ribosomal sites are preferentially found at the telomeric, centromeric or C-band regions of the chromosomes involved.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA the DNA sequences coding for 18S+28S rRNA plus the intervening spacer sequences - SSC 0.15 M sodium chloride, 0.015 sodium citrate, pH 7  相似文献   

12.
In pentaploid dogroses, Rosa section Caninae (2n=5x=35), the pollen transmits one basic genome (x=7) derived from the seven segregating bivalents, whereas the egg transmits four basic genomes (4x=28) one set derived from the segregation of seven bivalents and three sets of univalent-forming chromosomes. Chromosomes from all five genomes carry 18-5.8-26S nuclear ribosomal DNA (rDNA) sites. This mode of sexual reproduction, known as permanent odd polyploidy, can potentially lead to the independent evolution of rDNA on bivalent- and univalent-forming chromosomes. To test this hypothesis, we analyzed rRNA gene families in pollen and somatic leaf tissue of R. canina, R. rubiginosa and R. dumalis. Six major rRNA gene families (alpha, beta, beta' gamma, delta and epsilon) were identified based on several highly polymorphic sites in the internal transcribed spacers (ITSs). At least two of the major rRNA gene families were found in each species indicating that rDNAs have not been homogenized across subgenomes. A comparison of ITS1 sequences from leaf and pollen showed differences: the shared beta rRNA gene family was more abundant among pollen clones compared to leaf clones and must constitute a major part of the rDNA loci on bivalent-forming chromosomes. The gamma and delta families were underrepresented in pollen genomes and are probably located predominantly (or solely) on the univalents. The results support the hypothesis that pentaploid dogroses inherited a bivalent-forming genome from a common proto-canina ancestor, a likely donor of the beta rDNA family. Allopolyploidy with distantly related species is likely to have driven evolution of Rosa section Caninae.  相似文献   

13.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

14.
ABSTRACT. Strains of the opportunistic fungal pathogen Candida albicans vary in the presence or absence of a self‐splicing group I intron ribozyme (Ca.LSU) in the 25S rRNA gene on chromosome R. Strains of C. albicans typically either lack or contain this ribozyme. However, some strains have both intron‐containing and intronless rRNA genes (rDNA). Pulsed‐field gel electrophoresis analysis of undigested and restricted DNA showed at least six different karyotypes among eight independent colonies of such a heteroallelic strain. In each case, the variation was in chromosome R, and was due to changes in the number of rDNA units. In strains with only one type of rDNA, chromosome R also varied considerably. Polymerase chain reaction amplification spanning the rDNA unit demonstrated that intron‐containing rDNA units are tandemly arrayed, and are immediately adjacent to intronless units in the same cluster. Both types of units were present in the rDNA clusters of both R chromosomes. Possible explanations of these results are loss of Ca.LSU group I intron through purifying selection and/or a relaxation of the commonly accepted concerted evolution of the rDNA units.  相似文献   

15.
Three different amphiploid lines originated from crosses between wheat (Triticum L.) and lymegrass (Leymus Hochst.) were analysed by fluorescence in situ hybridization (FISH) using total genomic DNA and 18S.26S ribosomal genes (rDNA). Based on the genomic probes, these lines were the same in that they all were allohexaploids (2n=6x=42) containing 30 wheat and 12 lymegrass chromosomes. The ribosomal gene mapping further identified species origin of the chromosomes, whereby the lymegrass parent was undoubtedly L. mollis and the wheat was likely to be a Triticum species having the AB genomes. This rDNA mapping was also able to reveal differences in the genome composition among these lines, and such differences were mainly in the wheat nucleolar organizing regions (Nor). The first line (M) had two Nor-B1 (1BS), the second line (G) had one Nor-B1 (1BS), two Nor-B2 (6BS) and two Nor-A1 (1AS), whereas the third line (U) had the same Nor loci as the second line but two sites each. The wheat ribosomal genes were variably expressed depending on the lines, but the lymegrass loci appeared inactive. All three lines had the same Nor loci belonging to L. mollis, two Nor-m1 and two Nor-m2. Analysis of restriction fragment length polymorphism (RFLP) of the rDNA confirmed the identity of L. mollis parent in all three lines and verified the differences in the wheat ribosomal genes among them. These amphiploids were, however, similar in their restriction profiles, therefore indicating common origin. The molecular and cytogenetic evidence here suggested that these annual, fully fertile amphiploids that originated from the same crosses 40 years ago became genetically differentiated and fixed in stable forms. Received: 24 November 1998 / Accepted: 12 May 1999  相似文献   

16.
An analysis of 18S-25S and 5S rRNA genes in intact plants and cultured tissues of some Rauwolfia species was performed to compare these sequences variability occurred as a result of the species evolution in nature and that induced by tissue culture. The restriction fragment length polymorphism of 18S-25S and 5S rDNA was found both in intact plants of various Rauwolfia species and in long-term Rauwolfia serpentina tissue cultures. In addition, changes in the amount of 18S-25S rRNA genes were observed in long-term R. serpentina tissue cultures. The results demonstrate that rDNA variability observed in intact plants as well as in long-term cultures is attributed to differences in the same regions of ribosomal RNA genes.  相似文献   

17.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

18.
To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquaticaB. filifolia and B. guehoiB. linifloraB. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2–12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex.  相似文献   

19.
Drosophila hydei rRNA genes from different chromosomes and from different stocks have been studied by restriction enzyme analysis. In DNA from wild-type females, about half of the X chromosomal rRNA genes are interrupted by an intervening sequence within the 28S coding region. In contrast to D. melanogaster, the intervening sequences belong to a single size class of 6.0 kb. Although there are two nucleolus organizers on the Y chromosome, genes containing the intervening sequence seem to be restricted to the X chromosome. — As shown in four cloned rDNA fragments, the nontranscribed spacers differ in length by having varying numbers of a 242 base pair sequence located in tandem in the right section of the spacer. In genomic rDNA, the spacers also differ in length by a regular 0.25 kb interval. Spacers with between 5 and 15 subrepeats occur frequently within the X and Y chromosomal nucleolus organizers in different D. hydei stocks; shorter and longer spacers are also present but are relatively rare. — Although each genotype is characterized by different frequencies of some spacer classes, the prominent spacer length heterogeneity pattern is similar among the different nucleolus organizers and, therefore, seems to be conserved during evolution.This paper is dedicated to Professor Dr. W. Beermann on the occasion of his 60th birthday  相似文献   

20.
Martins C  Galetti PM 《Genetica》2001,111(1-3):439-446
In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct non-transcribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号