首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

4.
In the chick embryo, exogenous neurotrophin-3 (NT3) is sufficient to promote the differentiation of proprioceptive afferents even in the absence of limb muscle targets. To determine if NT3 can promote the differentiation of this phenotype in afferents with cutaneous targets, we analyzed the effects of chronic NT3 on cutaneous and muscle sensory neurons that express trkC, a receptor for NT3. In normal embryos, retrograde labeling and immunohistochemistry showed that about 75% of large-diameter muscle afferents express trkC, whereas only about 7% of large-diameter cutaneous afferents express this protein. After chronic treatment with NT3 during the cell death period, both populations of trkC(+) neurons were increased approximately twofold. Because this treatment is known to block cell death in sensory neurons, these results indicate that NT3 can promote the survival of both proprioceptive afferents and cutaneous afferents. To examine the phenotype of the cutaneous afferents rescued by NT3, we analyzed their projections and connections using transganglionic labeling and electrophysiological recording. The results indicate that exogenous NT3 neither altered the pattern of spinal projections nor caused cutaneous afferents to form monosynaptic connections with motor neurons. These results demonstrate that selective cell death does not contribute to the modality-specific pattern of spinal innervation and suggest that proprioceptive afferents may innervate muscle selectively.  相似文献   

5.
When the grasshopper, Barrytettix humphreysii, sheds a hindlimb during autotomy, certain thoracic muscles degenerate although they are neither directly damaged nor denervated. Muscle degeneration is induced when a leg nerve (N5) that does not innervate the thoracic muscles is severed. Together these results suggest that transneuronal mechanisms influence muscle survival. To further characterize this autotomy-induced process, we studied the degeneration of a thoracic tergotrochanteral muscle (M#133b,c) following autotomy or experimental manipulation in adult animals. Its degeneration is correlated with reduced activity of its neural input and occurs by programmed cell death (PCD). PCD onset is variable between individual muscle fibers, indicating that the trigger of degeneration is fiber specific. Muscle degeneration appears to be triggered by the loss of proprioceptive input from the autotomized limb, since severing of axons from proprioceptive organs, but not exteroceptive chemo- or mechanoreceptors, leads to muscle degeneration. Muscle disuse, neuronal degeneration, or changes in juvenile hormone titer do not appear to play a role in autotomy-induced degeneration. We propose that the loss of proprioceptive input from proximal campaniform sensilla on the tibia deafferents the thoracic muscle motor neurons and leads to a decrease in their activity. Muscle degeneration is ultimately triggered by the loss of normal neural activity.  相似文献   

6.
The purpose of the present works was to clarify whether the cranial nerves III, IV and VI carry proprioceptive afferent fibres from the extrinsic ocular muscles. In sheep the picture is now clear. The cranial nerves III, IV and VI carry many large proprioceptive fibres (12-16 micrometer) to the central nervous system. These nerves also contain many small fibres of the y-range (2-6 micrometer) which innervate the intrafusal muscle fibres in the spindles. In man the picture is still vague: most of the spindles are not typical, the large proprioceptive fibres (12-16 micrometer) and the small y-fibres (2-6 micrometer) are very few in the cranial nerves III, IV and VI. It is to be concluded that in sheep the cranial nerves III, IV and VI are not purely motor nerves to the extrinsic ocular muscles, but they also carry many of the large fibres of the proprioceptive function. In man, such large fibres are not found and the pathway of proprioceptive afferents from the orbital muscles is still not certain.  相似文献   

7.
Charcot–Marie–Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss. We generated a mouse model of CMT type 2E (CMT2E) expressing human neurofilament light E396K (hNF‐LE396K), which develops decreased motor nerve conduction velocity, ataxia and muscle atrophy by 4 months of age. Symptomatic hNF‐LE396K mice developed phenotypes that were consistent with proprioceptive sensory defects as well as reduced sensitivity to mechanical stimulation, while thermal sensitivity and auditory brainstem responses were unaltered. Progression from presymptomatic to symptomatic included a 50% loss of large diameter sensory axons within the fifth lumbar dorsal root of hNF‐LE396K mice. Owing to proprioceptive deficits and loss of large diameter sensory axons, we analyzed muscle spindle morphology in presymptomatic and symptomatic hNF‐LE396K and hNF‐L control mice. Muscle spindle cross‐sectional area and volume were reduced in all hNF‐LE396K mice analyzed, suggesting that alterations in muscle spindle morphology occurred prior to the onset of typical CMT pathology. These data suggested that CMT2E pathology initiated in the muscle spindles altering the proprioceptive sensory system. Early sensory pathology in CMT2E could provide a unifying hypothesis for the convergence of pathology observed in CMT.  相似文献   

8.
To further elucidate the mechanisms underlying multisensory integration, this study examines the controversial issue of whether congruent inputs from three different sensory sources can enhance the perception of hand movement. Illusory sensations of clockwise rotations of the right hand were induced by either separately or simultaneously stimulating visual, tactile and muscle proprioceptive channels at various intensity levels. For this purpose, mechanical vibrations were applied to the pollicis longus muscle group in the subjects’ wrists, and a textured disk was rotated under the palmar skin of the subjects’ right hands while a background visual scene was projected onto the rotating disk. The elicited kinaesthetic illusions were copied by the subjects in real time and the EMG activity in the adductor and abductor wrist muscles was recorded. The results show that the velocity of the perceived movements and the amplitude of the corresponding motor responses were modulated by the nature and intensity of the stimulation. Combining two sensory modalities resulted in faster movement illusions, except for the case of visuo-tactile co-stimulation. When a third sensory input was added to the bimodal combinations, the perceptual responses increased only when a muscle proprioceptive stimulation was added to a visuo-tactile combination. Otherwise, trisensory stimulation did not override bimodal conditions that already included a muscle proprioceptive stimulation. We confirmed that vision or touch alone can encode the kinematic parameters of hand movement, as is known for muscle proprioception. When these three sensory modalities are available, they contribute unequally to kinaesthesia. In addition to muscle proprioception, the complementary kinaesthetic content of visual or tactile inputs may optimize the velocity estimation of an on-going movement, whereas the redundant kinaesthetic content of the visual and tactile inputs may rather enhance the latency of the perception.  相似文献   

9.
The peroxidase-antiperoxidase (PAP) method, and a specific monoclonal antibody (192-IgG) were used to determine the localization of nerve growth factor receptor (NGFr) in the skeletal muscles of the adult rats. The rectus femoris and the gastrocnemius (medialis and lateralis) muscles were analyzed. Occurrence of NGFr immunoreactivity was observed in: 1) a subpopulation of myelinated nerve fibers within muscle nerve trunks; 2) the vascular adventitia and nerve-like profiles around the blood vessels; 3) the outer capsule and the surface of the intrafusal muscle fibers of muscle spindles. Conversely, images, suggesting the presence of NGFr on muscle fibers or in motor end-plates, were not found. Our results suggest the presence of NGF-binding sites in sensory and sympathetic nerve fibers, and/or their target tissues localized on the skeletal muscles of the rat, whereas the motor nerve fibers lack of NGFr. The dependence of sympathetic neurons, proprioceptive primary sensory neurons, and motoneurons innervating the mammalian muscles upon NGF or other neurotrophic factors is discussed.  相似文献   

10.
Age‐associated loss of muscle function is exacerbated by a concomitant reduction in balance, leading to gait abnormalities and falls. Even though balance defects can be mitigated by exercise, the underlying neural mechanisms are unknown. We now have investigated components of the proprioceptive and vestibular systems in specific motor neuron pools in sedentary and trained old mice, respectively. We observed a strong age‐linked deterioration in both circuits, with a mitigating effect of exercise on vestibular synapse numbers on motor neurons, closely associated with an improvement in gait and balance in old mice. Our results thus describe how the proprioceptive and vestibular systems are modulated by age and exercise, and how these changes affect their input to motor neurons. These findings not only make a strong case for exercise‐based interventions in elderly individuals to improve balance, but could also lead to targeted therapeutic interventions aimed at the respective neuronal circuitry.  相似文献   

11.
The central distribution of intradental afferent nerve fibers was investigated by combining electron microscopic observations with a selective method for inducing degeneration of the A delta- and C-type afferent fibers. Degenerating terminals were found on the proprioceptive mesencephalic trigeminal neurons and on dendrites in the neuropil of the trigeminal motor nucleus after application of capsaicin to the rat's lower incisor tooth pulp. The results give anatomical evidence of new sites of central projection of intradental A delta- and C-type fibers whereby the nociceptive information from the tooth pulp can affect jaw muscle activity.  相似文献   

12.
To reveal mechanisms responsible for changes in muscle contractility during microgravity, it seems expedient to perform similar studies under microgravity or conditions simulating microgravity. Among standard methods for simulating microgravity, hypokinesia modelling support unloading (or rather its redistribution), and hypodynamia are employed. Absence of weight loading, decreased muscular effort characteristic of the Earth conditions due to counteracting gravity, results in a general muscle underloading and therefore in lowered activity of the proprioceptive input. This may be one of the reasons not only for a resetting of motor coordination and control, but also for a gradual development of a persistent change in the motor control system. The basis of countermeasures against negative consequences of microgravity (hypokinesia) is the correct choice of countermeasures. In this connection of specific interest is a study of the magnitude of change in skeletal muscle contractility in humans after a variety of countermeasures when functional activity is lowered by a long-term 120-days HDT which is an adequate simulation of physiological microgravity-induced effects.  相似文献   

13.
Eccentric exercise has been extensively used as a model to study muscle damage-induced neuromuscular impairment, adopting mainly a bilateral matching task between the reference (unexercised) arm and the indicator (exercised) arm. However, little attention has been given to the muscle proprioceptive function when the exercised arm acts as its own reference. This study investigated muscle proprioception and motor control, with the arm acting both as reference and indicator, following eccentric exercise and compared them with those observed after isometric exercise. Fourteen young male volunteers were equally divided into two groups and performed an eccentric or isometric exercise protocol with the elbow flexors of the non-dominant arm on an isokinetic dynamometer. Both exercise protocols induced significant changes in indicators of muscle damage, that is, muscle soreness, range of motion and maximal isometric force post-exercise (p < 0.05–0.001), and neuromuscular function was similarly affected following both protocols. Perception of force was impaired over the 4-day post-exercise period (p < 0.001), with the applied force being systematically overestimated. Perception of joint position was significantly disturbed (i.e., target angle was underestimated) only at one elbow angle on day 4 post-exercise (p < 0.05). The misjudgements and disturbed motor output observed when the exercised arm acted as its own reference concur with the view that they could be a result of a mismatch between the central motor command and an impaired motor control after muscle damage.  相似文献   

14.
In a muscle-specific flight simulator (simulator driven by muscle action potentials) locusts (Locusta migratoria) show motor learning by which steering performance of the closed-loop muscles is improved. The role of proprioceptive feedback for this motor learning has been studied. Closed-loop muscles were cut in order to disable proprioceptive feedback of their contractions. Since there are no proprioceptors within the muscles, this is a muscle-specific deafferentation. Cut muscles are still activated during flight and their action potentials can be used for controlling the flight simulator. With cut muscles in closed-loop, steering is less reliable as can be seen from the frequent oscillations of the yaw angle. However, periods of stable flight indicate that deafferented muscles are still, in principle, functional for steering. Open-loop yaw stimuli reveal that steering reactions in cut muscles are weaker and have a longer delay than intact muscles. This is responsible for the oscillations observed in closed-loop flight. Intact muscles can take over from cut muscles in order to re-establish stable closed-loop flight. This shows that proprioceptive mechanisms for learning are muscle specific. A hypothetical scheme is presented to explain the role of proprioception for motor learning.  相似文献   

15.
This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.  相似文献   

16.
Electrical stimulation of femoral nerve modulates voluntary tonic activity o of ipsilateral soleus muscle. Stimulus time-locked inhibitory and facilitatory phases can be distinguished. EMG temporal analysis suggests that early perturbations are correlated with spinal effects of centripetal electrical activity. The inhibitory effects which momentarily abolish voluntary soleus activity are thought to result from quadriceps Ib fibres recruitment. While no heteronymous activity is induced at rest, femoral nerve Ia fibres activation can produce soleus muscle reflex when soleus motor nucleus excitability is increased by voluntary command. Recurrent discharge resulting from soleus reflex response enhances inhibition initially due to quadriceps Ib volley. Secondary effects of isometric quadriceps contraction (and soleus contraction when the femoral stimulus elicits a reflex in this muscle) have their own effects later. These findings suggest that proprioceptive relationships of the two muscular groups are efficient during tonic isometric voluntary command.  相似文献   

17.
The existence of proprioceptive influences has been inferred in the Dipteran flight motor system but the sensory receptors(s) responsible has not been identified. We describe a wing-base structure which is widespread, and probably universal in the Diptera, which possesses the requisite mechanical and neurophysiological properties to provide such proprioceptive feedback.  相似文献   

18.
Ling KK  Lin MY  Zingg B  Feng Z  Ko CP 《PloS one》2010,5(11):e15457
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ~28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.  相似文献   

19.
It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response.  相似文献   

20.
In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号