首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that 1,25-dihydroxyvitamin D3 (calcitriol) is a macrophage-derived cytokine and a potent inhibitor of IL-2 and interferon-gamma (IFN-gamma) production and T lymphocyte proliferation. The growth inhibitory effect of calcitriol is only partially reversed by IL-2 addition, suggesting IL-2 independent effects. In this report we characterize the IL-2-independent effects of calcitriol on lymphocyte activation. Calcitriol inhibited cellular transition from early to late G1 (G1A-G1B transition) in both the absence and presence of IL-2. Exogenous IL-2 did not increase either IFN-gamma production or transferrin receptor (TfR) expression in the presence of calcitriol despite increases in cell entry into late G1 and proliferation. Calcitriol treatment reduced TfR expression by activated T lymphocytes independent of their location in the cell cycle, further suggesting its independence from IL-2-mediated events. Combinations of rIL-2 and rIL-4 did not reverse calcitriol-dependent inhibition of proliferation and TfR expression to any greater degree than rIL-2 alone. Northern blot analysis demonstrated the decrease in IFN-gamma and TfR mRNA accumulation with calcitriol treatment was unaffected by exogenous IL-2. In contrast, IL-2R mRNA and protein were increased by IL-2, with superinduction in the presence of calcitriol, demonstrating that the lack of effect on IFN-gamma and TfR was not due to IL-2 insensitivity. Moreover, equivalent numbers of high-affinity IL-2R were expressed by both control and calcitriol-treated T lymphoblasts. Thus, lectin-activated T lymphocyte responsiveness to IL-2, as measured by IL-2R expression and proliferation, can be partly to completely dissociated from IFN-gamma production and TfR expression in the presence of calcitriol. Finally, IL-2-induced proliferation of unstimulated mononuclear cells and purified T lymphocytes was inhibited by calcitriol. These data indicate that local production of calcitriol by activated macrophages is capable of regulating T lymphocyte activation not only through suppression of IL-2 production, but also through additional mechanism(s), that are mediated at a post-IL-2R level.  相似文献   

2.
The regulation of the first cell cycle of human, activated (G1) PBL was analyzed by flow cytometry and [3H]thymidine incorporation. Endogenous IL 2 production was blocked in situ by pharmacologic concentration of DEX (100 to 1000 nM), resulting in an 80 to 90% reduction of thymidine uptake. Although T lymphocyte activation (G0-G1a transition) by PHA was unaltered, cells remained in the G1a phase of the cell cycle due to insufficient RNA synthesis for proliferation. The addition of IL 2-containing supernatants reversed this inhibitory effect of DEX by allowing the cells to synthesize more RNA (G1a-G1b transition). Such cells could enter the S phase and proliferate. Similar studies were performed on cells treated with a monoclonal antibody (anti-Tac) against the IL 2 receptor. In these studies, IL 2-induced RNA synthesis, and subsequent proliferation of DEX-treated and PHA-stimulated cells was inhibited by anti-Tac. Anti-Tac did not, however, inhibit the effect of endogenous IL 2 (PHA-stimulated PBL without DEX treatment), although it did bind equally well to such cells. Thus, IL 2 directly or indirectly regulates human T cell proliferation at the level of RNA synthesis. Furthermore, anti-Tac can inhibit the mitogenic signal given by endogenous IL 2, but not by in situ produced IL 2, an observation of importance to further investigations of the mechanisms by which IL 2 interacts with specific receptors to elicit proliferation.  相似文献   

3.
A C3-fragment preparation (C3-FP) was studied for its ability to regulate human peripheral blood lymphocyte activation. It was found that very low concentrations of this low m.w. fraction, which was free of C3a, inhibited the PHA-induced lymphocyte proliferation without any cytotoxicity. Cytofluorometric analysis showed that C3-FP did not influence the transition of T cells from the G0 to the G1a phase of the cell cycle. However, the IL 2-dependent transition from the G1a to the G1b phase of the cell cycle was effectively blocked. Addition of exogenous IL 2 did not release cells arrested in the G1a phase. Furthermore, neither IL 2 production nor IL 2 receptor formation was inhibited by C3-FP, and binding of IL 2 to its receptor was unaltered. It was found that only IL 2-dependent cell lines were inhibited in their proliferation; all other tested cell lines were unaffected by C3-FP. Our findings suggest that cleaved products of C3 may inhibit IL 2-dependent lymphocyte proliferation at a stage where the IL 2 signal is required for initiation of proliferation.  相似文献   

4.
Effective chemotherapy for pancreatic cancer is urgently needed. The aim of this study was to compare the anti-proliferative activity on pancreatic cancer cell lines of the vitamin D(3) analog, 22-oxa-1,25-dihydroxyvitamin D(3), maxacalcitol, with that of 1,25-dihydroxyvitamin D(3), calcitriol, with analysis of vitamin D receptor status and the G(1)-phase cell cycle-regulating factors. Antiproliferative effects of both agents were compared using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and by measuring the tumor size of xenografts inoculated into athymic mice. Scatchard analysis of vitamin D receptor contents, and mutational analysis of receptor complementary DNA were performed. Levels of expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, p21 and p27, were analysed by western blotting. In vitro, maxacalcitol and calcitriol markedly inhibited the proliferation and caused a G(1) phase cell cycle arrest with the appearance of numerous domes. In vivo, maxacalcitol inhibited the growth of BxPC-3 xenografts more significantly than calcitriol, without inducing hypercalcemia. Responsive cells had abundant functional vitamin D receptors. However, Hs 766T, showing no response to either agent, had the second highest receptor contents with no abnormalities in its primary structure deduced by receptor complementary DNA. In the responsive cells, p21 and p27 were markedly up-regulated after 24h of treatment with both agents. In non-responsive cells, no such changes were observed. In conclusion, maxacalcitol and calcitriol up-regulate p21 and p27 as an early event, which in turn could block the G(1)/S transition and induce growth inhibition in responsive cells, and maxacalcitol may provide a more useful tool for the chemotherapy of pancreatic cancer than calcitriol because of its low toxicity.  相似文献   

5.
Desferoxamine blocks IL 2 receptor expression on human T lymphocytes   总被引:4,自引:0,他引:4  
Thymidine uptake by PHA-stimulated human lymphocytes is reduced in the presence of 100 microM or greater concentrations of the iron-chelating agent desferoxamine (DF). We assessed expression of IL 2 receptor, 4F2 and Ia antigens, IL 2 production, and cell cycle progression by blood mononuclear cells (MNC) stimulated by PHA in the presence or absence of DF to determine whether the lack of T cell proliferation was a manifestation of inhibition of an earlier activation event. Tac antigen expression on PHA-stimulated MNC was inhibited by DF throughout 8 days of culture, and those cells which were positive had a low density of Tac antigen as compared with controls without DF. Expression of other activation antigens, 4F2 and Ia, was not impaired by DF. The supernatants of the DF-containing and control cultures contained equivalent IL 2 activity, as measured on the HT-2 cell line. Cell cycle analysis of these cultures shows that the addition of DF at the beginning of culture blocks most cells from undergoing G0 to G1 transition, whereas later addition of DF arrests the progression of the T cell blasts through the cell cycle. Separation of cells cultured with PHA and DF into Tac+ and Tac- subsets showed that progression from G0 to G1 was restricted to the former subset. These results suggest that interference with IL 2 receptor expression might contribute to the block in mitogen-induced proliferation caused by DF.  相似文献   

6.
PGE2-induced inhibition of the proliferatory response of PHA-stimulated human PBL and Con A-stimulated murine thymocytes was analyzed by flow cytometry. It was found that the activation process (G0-G1a transition) was not influenced by PGE2 over a wide range of concentrations (10(-10) to 10(-6) M), nor was the formation of IL 2 receptors inhibited. Similarly, the viability of human lymphocytes was practically unaltered. In contrast, the IL 2-dependent cell cycle event (G1a-G1b transition), which is required for proliferation, was inhibited in a dose-dependent fashion. The addition of IL 2-containing supernatants to such cultures prevented the PGE2-mediated block in the G1a phase and reconstituted a normal lymphocyte proliferation. Furthermore, lower IL 2 titers were measured in supernatants from PHA-stimulated human PBL treated with PGE2. These findings strongly suggest that PGE2 primarily exerts its inhibitory effect on lymphocyte proliferation through an inhibition of IL 2 production.  相似文献   

7.
8.
T cell growth without serum   总被引:5,自引:0,他引:5  
Most in vitro T cell proliferation experiments are performed by using serum-supplemented medium, yet the actual contributions of serum components to cell cycle progression remain ill-defined, thus complicating attempts to fully define requirements for cell division. By utilizing a functional separation between T cell receptor-triggered "competence" and IL 2-promoted "progression" to independently assess serum requirements during each cell cycle stage, it was shown that serum serves an essential, active role only during the early events of the competence phase (G0-G1 transition) of T cell activation. Serum is required for optimal IL 2 production and the cell surface expression of IL 2 receptors after the stimulation of the T3/Ti antigen receptor complex. In contrast, serum does not function actively during IL 2-mediated progression through the G1 phase of the cycle. Serum proteins serve only a passive role at this stage, preventing the adsorption of IL 2. This same effect can be provided by any number of proteins including IL 2 itself, or even a high cell concentration. Supplementation of serum-free T cell cultures solely with IL 2 and transferrin is sufficient for maximal T cell proliferation, although the time of the peak response is delayed owing to a suboptimal rate of IL 2 receptor expression. Accordingly, the realization that serum is only necessary for the earliest stage of T cell activation will now enable studies designed to identify the critical individual serum components and to define their mechanism of action.  相似文献   

9.
10.
Stringent accessory cell (AC) depletion by a three-step procedure--plastic adherence, nylon wool adherence, followed by simultaneous treatment with two anti-AC monoclonal antibodies + complement--has allowed the demonstration of several AC-dependent stages in the T cell activation pathway. Simultaneous analysis of DNA content and cell surface immunofluorescence (correlation of activation antigen expression with cell cycle position) or DNA and RNA content (cell cycle position) of cultured cells was accomplished by dual parameter flow cytometry. AC-depleted, PHA-stimulated human peripheral blood T lymphocytes (PBTL) failed to exhibit "early" indicators of activation, including increased RNA content, expression of three activation-associated cell surface proteins (IL 2 receptor, transferrin receptor, and 4F2 protein), and the production of IL 2. The AC-depleted PBTL that failed to express these "early" markers of activation also failed to progress into the "late" phase of activation, DNA synthesis. All indicators of PHA responsiveness were fully replenished upon addition of AC but were only reconstituted to intermediate levels by addition of excess quantities of either highly purified IL 1 or crude AC-conditioned medium with lymphocyte-activating factor activity. These data suggest that the AC membrane plays a key and as yet undefined role in the stimulation of T cells by PHA.  相似文献   

11.
The mechanism by which prostaglandin E2 (PGE2) inhibits human T lymphocyte activation and proliferation was studied. We analyzed the effect of physiologic concentrations of PGE2 on interleukin 2 (IL 2) production, expression of IL 2 receptor (Tac antigen), and expression of the transferrin receptor after in vitro activation with phytohemagglutinin. PGE2 inhibited T lymphocyte proliferation by 80 to 90% of control values. This was associated with a similar degree of inhibition of IL 2 production while the expression of IL 2 receptor was not affected. This was in marked contrast to the expression of the transferrin receptor, which was inhibited 65% after 72 hr of in vitro activation. The addition of exogenous, purified IL 2 reconstituted lymphocyte proliferation to 50% of control values, but had no effect on transferrin receptor expression. Because PGE2 is known to increase the intracellular concentration of 3',5' cyclic adenosine monophosphate (cAMP), we investigated the effect of another adenylate cyclase activator, i.e., isoproterenol, as well as the effect of extracellular administration of the cAMP derivative dibutyryl cAMP (dBcAMP) on IL 2 production, Tac antigen expression, and transferrin receptor expression. It was demonstrated that isoproterenol, as well as dBcAMP, inhibited transferrin receptor expression on PHA-activated T lymphocytes to the same extent as PGE2, and exogenous IL 2 could not counteract the down-regulation of the receptor expression. In contrast, neither isoproterenol nor dBcAMP had any significant effect on IL 2 receptor expression. Prostaglandin F2 alpha (PGF2 alpha), which has been reported to elevate intracellular cyclic GMP levels, had no effect on lymphocyte activation and proliferation, and did not counteract the PGE2-induced depression in IL 2 production. In contrast to its effect on peripheral blood lymphocytes, PGE2 had no effect on transferrin receptor expression or cell proliferation by IL 2-dependent T cell clones and IL 2-independent T cell lines. These studies demonstrate that PGE2 exerts its inhibitory effects on T cell activation and proliferation via two distinct pathways: inhibition of IL 2 production and inhibition of transferrin receptor expression. The transferrin receptor inhibition is mediated via the cAMP pathway and is IL 2-independent.  相似文献   

12.
A mitogenic anti-CD3 ("T3") monoclonal antibody (64.1), that stimulates polyclonal T cell activation by a mechanism believed to be similar to antigen via binding to the T cell receptor complex, was utilized in soluble (SOL) and Sepharose-bound (SEPH) forms to dissect the role of accessory cells (AC) and interleukin 1 (IL 1) in supporting T cell activation. The T cell activation pathway was dissected into "early" events including expression of interleukin 2 receptors (IL 2R), increased RNA content, IL 2 release, and "late" (DNA synthesis) events. Unseparated peripheral blood mononuclear cells progressed through all stages of activation when stimulated by either form of 64.1. Stringent AC depletion by plastic adherence, nylon wool adherence, and L-leucine methyl ester (selectively lyses AC) prevented early and late T cell responses to either form of 64.1. The addition of highly purified IL 1 replenished both early and late T cell responses to SEPH-64.1 but not to SOL-64.1. Although SOL-64.1 stimulation of purified T cells induced modulation of the CD3 complex, only SEPH-64.1 induced IL 1 responsiveness, and exogenous IL 1 was then able to support synthesis of RNA, secretion of IL 2, expression of IL 2R, and ultimately, DNA synthesis. Therefore, the stages of early T cell activation owing to stimulation of the CD3-T cell receptor complex and IL 1 responsiveness have been dissected.  相似文献   

13.
To improve our understanding of the cutaneous vitamin D system, we studied vitamin D receptor (VDR) gene regulation in cultured human keratinocytes. Because VDR and its ligand 1 alpha,25-dihydroxyvitamin D(3) have been implicated in epidermal growth control, we investigated VDR expression as related to cellular proliferation by using different cell cycle synchronization protocols. Keratinocytes, deprived of growth factors, were forced into quiescence and a concomitant loss of VDR expression was observed. Mitogenic stimulation of these G(0) cells however quickly upregulated VDR levels several hours ahead the G(1)-S transition point. Growth arrest at the G(1)-S border by mimosine treatment or at the metaphase by nocodazole also downregulated VDR levels but a restoration of VDR expression was again quickly achieved after reentering the cell cycle. These findings indicate that VDR expression in keratinocytes is restricted to actively cycling cells, but not limited to one particular phase of the cell cycle.  相似文献   

14.
Effects of cadmium on lymphocyte activation   总被引:2,自引:0,他引:2  
The effects of cadmium (Cd) on phytohemoagglutinin or phorbol myristate acetate-induced lymphocyte activation were investigated and a dose-dependent inhibition of cell proliferation was found. Kinetic studies revealed that the Cd-sensitive step is an early event of T cell stimulation. Failure of IL2 secretion and reduction of IL2 receptor expression in the Cd-treated cells are also reported. Regardless of which mechanism is responsible for Cd effects, our studies show that the inhibition of lymphocyte activation is associated with reduced [3H]phorbol dibutyrate binding to Ca2+-phospholipid-dependent protein kinase and altered breakdown of phosphatidylinositols. Thus, Cd interferes with two biochemical events which play a critical role in lymphocyte signal transduction and activation.  相似文献   

15.
The mechanism responsible for the lymphocytotoxicity associated with congenital adenosine deaminase (ADA) deficiency has been ascribed to an accumulation of dATP. Elevated levels of dATP can then lead to inhibition of DNA synthesis by inhibiting ribonucleotide reductase and causing a depletion of the other deoxynucleotide triphosphates (dNTP). This hypothesis was derived principally from studies with murine and human lymphoblastoid cell lines (LCL) and apparently confirmed in a limited number of investigations with lectin-stimulated lymphocytes. Our biochemical studies of lectin-stimulated mouse and human lymphocytes were not consistent with the dATP model and suggested that AdR exerted effects on lymphocyte activation that preceded the initiation of DNA synthesis. In the current studies, we focused on the effects of AdR on the early events in T lymphocyte activation, because we found they were the most sensitive to AdR toxicity. AdR blocked neither the production of T cell growth factor (TCGF) by lectin-stimulated lymphocytes nor the expression of TCGF receptors as detected by the anti-Tac monoclonal antibody that recognizes the human TCGF receptor. AdR did, however, block the early TCGF-dependent events leading to the entry into the cell cycle. By using the metachromatic fluorescence stain acridine orange, we found that AdR blocked the increased synthesis of RNA that characterizes the entry into the G1 phase of the cell cycle from the G0, resting state. Because these early effects were caused by the lowest doses of AdR, and because they preceded the synthesis of DNA by 15 to 20 hr, it suggested that these effects may be principally responsible for the in vivo toxicity associated with ADA deficiency. Furthermore, none of the other proposed biochemical mechanisms, e.g., inhibition of methylation, diminution of ATP levels, or incorporation of AdR into polyadenylated RNA, appeared adequate to explain AdR toxicity during T lymphocyte activation.  相似文献   

16.
17.
18.
BACKGROUND: Cellular Ras and cyclin D1 are required at similar times of the cell cycle in quiescent NIH3T3 cells that have been induced to proliferate, but not in the case of cycling NIH3T3 cells. In asynchronous cultures, Ras activity has been found to be required only during G2 phase to promote passage through the entire upcoming cell cycle, whereas cyclin D1 is required through G1 phase until DNA synthesis begins. To explain these results in molecular terms, we propose a model whereby continuous cell cycle progression in NIH3T3 cells requires cellular Ras activity to promote the synthesis of cyclin D1 during G2 phase. Cyclin D1 expression then continues through G1 phase independently of Ras activity, and drives the G1-S phase transition. RESULTS: We found high levels of cyclin D1 expression during the G2, M and G1 phases of the cell cycle in cycling NIH3T3 cells, using quantitative fluorescent antibody measurements of individual cells. By microinjecting anti-Ras antibody, we found that the induction of cyclin D1 expression beginning in G2 phase was dependent on Ras activity. Consistent with our model, cyclin D1 expression during G1 phase was particularly stable following neutralization of cellular Ras. Finally, ectopic expression of cyclin D1 largely overcame the requirement for cellular Ras activity during the continuous proliferation of cycling NIH3T3 cells. CONCLUSIONS: Ras-dependent induction of cyclin D1 expression beginning in G2 phase is critical for continuous cell cycle progression in NIH3T3 cells.  相似文献   

19.
Stimulation of T cells by the T‐cell receptor (TCR)/CD3 complex results in interleukin‐2 (IL‐2) synthesis and surface expression of the IL‐2 receptor (IL‐2R), which in turn drive T‐cell proliferation. However, the significance of the requirement of IL‐2 in driving T‐cell proliferation, when TCR stimulation itself delivers potential mitogenic signals, is unclear. We show that blocking of IL‐2 synthesis by Cyclosporin A (CsA) suppressed both the Concanavalin A (Con A)‐ and phorbol myristate acetate (PMA)/ionomycin‐induced proliferation of T cells. The latter is also inhibited by anti‐IL‐2R. Kinetic studies showed that T‐cell proliferation begins to become resistant to CsA inhibition by about 12 h and became largely resistant by 18 h of stimulation. PMA, the protein kinase C activator, enhanced Con A‐induced T‐cell proliferation if added only within first 12 h of stimulation, and not after that. Given the fact that, in the present study, TCR is downregulated within 2 h of Con A stimulation and T cells entered the S phase of cell cycle by about 18 h of stimulation, the above results suggest that TCR stimulation provides the initial trigger to the resting T cells, which allows the cells to traverse the first two third portions of G1 phase of cell cycle and become proliferation competent. IL‐2 action begins afterward, delivering the actual proliferation signal(s), allowing the cells to traverse the rest of G1 phase and enter the S phase of the cell cycle. J. Cell. Biochem. 76:37–43, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Although considerable data have recently been accumulated regarding the functional role of natural killer (NK) cells, relatively little is known about the factors that regulate NK cell activity. In these studies, we evaluated the role of interleukin 2 (IL 2) and the expression of the IL 2 receptor in the activation and proliferation of human NK cloned cell lines. By using a series of cloned cell lines, we were able to analyze homogeneous populations of NK cells that ordinarily comprise only a small fraction of peripheral blood lymphocytes and are extremely heterogeneous with respect to phenotypes and cytotoxic specificities. In comparison with several T cell clones, we found a much lower density of IL 2 receptors on NK clones, regardless of whether or not these cloned cells had a mature T cell phenotype. Correspondingly, NK clones needed a 10-fold higher concentration of recombinant IL 2 for maximal proliferation. Moreover, blocking studies with specific monoclonal IL 2 receptor antibodies indicated that IL 2 is both necessary and sufficient to induce the proliferation of NK clones. Because the majority of peripheral blood NK cells and NK clones express the T11 E rosette receptor antigen, which has been shown to be an antigen-independent activation pathway for T cells, we were able to study the role of monoclonal anti-T11 antibodies in the activation of various NK clones for which a specific target antigen is not known. In contrast to T cell clones, the induction of IL 2 receptor expression after T11 activation was possible only for some NK clones such as JT10 and JT3, but not for CNK5. Before activation, the IL 2 receptor expression of NK clones was confined to cells in the G2 - M phase, but after T11 activation the more pronounced IL 2 receptor expression became independent of the cell cycle. With respect to the direct proliferative effect of anti-T11 activation that has been noted with T cell clones, only the T3+ (JT10) and not the T3- NK clones could be directly stimulated. Nevertheless, IL 2 receptor expression could be triggered on some T3- clones such as JT3. Because T11-induced proliferation of T cells has been shown to be dependent on both the expression of the IL 2 receptor and on the interaction of this receptor with IL 2, it is proposed that the different responses of NK cells to T11 activation may reflect the ability of the individual clone to produce endogenous IL 2, as well as its ability to express the IL 2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号