首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Chromatin-remodeling complexes have been a central area of focus for research dealing with accessing cellular DNA sequestered in chromatin. Although the linker histone H1 plays a major role in promoting and maintaining higher-order chromatin structure, it has been noticeably absent from assays utilizing chromatin-remodeling enzymes. This review focuses on two ATP-dependent chromatin-remodeling complexes, Drosophila ISWI and mammalian SWI/SNF, that have been assayed using chromatin templates containing histone H1.  相似文献   

6.
7.
8.
9.
10.
Endosperm: the crossroad of seed development   总被引:11,自引:0,他引:11  
The endosperm is an essential part of the seed that sustains embryo development and reserve storage. Several genes that are involved in endosperm differentiation and that have domains of expression arranged along a conserved antero-posterior axis have been isolated in Arabidopsis and in cereals. Endosperm polarity is controlled maternally by chromatin-remodeling complexes. Endosperm development appears to be predominantly under epigenetic controls that might be linked with its evolutionary origin.  相似文献   

11.
12.
Shen X  Ranallo R  Choi E  Wu C 《Molecular cell》2003,12(1):147-155
Actin-related proteins (Arps) and conventional actin are enigmatic components of many chromatin-remodeling enzyme complexes. The yeast INO80 ATP-dependent chromatin-remodeling complex contains stoichiometric amounts of Arp4, Arp5, Arp8, and actin. Here we have revealed functions of Arp5 and Arp8 by analysis of mutants. arp5 Delta and arp8 Delta mutants display an ino80 Delta phenotype. Purification of INO80 complexes from arp5 Delta and arp8 Delta cells shows that protein complexes remain intact but are compromised for INO80 ATPase activity, DNA binding, and nucleosome mobilization. The INO80 (arp8 Delta) complex is strikingly deficient, not only for the Arp8 subunit, but also for Arp4 and actin, suggesting an ordered assembly of Arps. Binding of Arp8 to the INO80 complex requires an N-terminal region of Ino80 adjacent to the conserved ATPase domain. GST-Arp8 binds preferentially to histones H3 and H4 in vitro, suggesting a histone chaperone function. These findings show direct involvement of Arps in the chromatin-remodeling process.  相似文献   

13.
Nucleosomes have long been known to inhibit DNA transactions on chromosomes and a remarkable abundance of multiprotein complexes that either enhance or relieve this inhibition have been described. Most is known about chromatin-remodeling complexes that perturb nucleosome structure.  相似文献   

14.
15.
16.
The N-terminal domain of c-Myc plays a key role in cellular transformation and is involved in both activation and repression of target genes as well as in modulated proteolysis of c-Myc via the proteasome. Given this functional complexity, it has been difficult to clarify the structures within the N terminus that contribute to these different processes as well as the mechanisms by which they function. We have used a simplified yeast model system to identify the primary determinants within the N terminus for (i) chromatin remodeling of a promoter, (ii) gene activation from a chromatin template in vivo, and (iii) interaction with highly purified Gcn5 complexes as well as other chromatin-remodeling complexes in vitro. The results identify two regions that contain autonomous chromatin opening and gene activation activity, but both regions are required for efficient interaction with chromatin-remodeling complexes in vitro. The conserved Myc boxes do not play a direct role in gene activation, and Myc box II is not generally required for in vitro interactions with remodeling complexes. The yeast SAGA complex, which is orthologous to the human GCN5-TRRAP complex that interacts with Myc in human cells, plays a role in Myc-mediated chromatin opening at the promoter but may also be involved in later steps of gene activation.  相似文献   

17.
18.
19.
20.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号