首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

2.
The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.  相似文献   

3.
F Duong  W Wickner 《The EMBO journal》1997,16(10):2756-2768
Escherichia coli preprotein translocase contains a membrane-embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional 'core' of the SecYEG complex. Although sufficient to provide sites for high-affinity binding and membrane insertion of SecA, and for its activation as a preprotein-dependent ATPase, SecYE has only very low capacity to support translocation. The proteins encoded by the secD operon--SecD, SecF and YajC--also form an integral membrane heterotrimeric complex (SecDFyajC). Physical and functional studies show that these two trimeric complexes are associated to form SecYEGDFyajC, the hexameric integral membrane domain of the preprotein translocase 'holoenzyme'. Either SecG or SecDFyajC can support the translocation activity of SecYE by facilitating the ATP-driven cycle of SecA membrane insertion and de-insertion at different stages of the translocation reaction. Our findings show that each of the prokaryote-specific subunits (SecA, SecG and SecDFyajC) function together to promote preprotein movement at the SecYE core of the translocase.  相似文献   

4.
Yahr TL  Wickner WT 《The EMBO journal》2000,19(16):4393-4401
SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.  相似文献   

5.
Preprotein translocation in Escherichia coli is mediated by translocase, a multimeric membrane protein complex with SecA as the peripheral ATPase and SecYEG as the translocation pore. Unique cysteines were introduced into transmembrane segment (TMS) 2 of SecY and TMS 3 of SecE to probe possible sites of interaction between the integral membrane subunits. The SecY and SecE single-Cys mutants were cloned individually and in pairs into a secYEG expression vector and functionally overexpressed. Oxidation of the single-Cys pairs revealed periodic contacts between SecY and SecE that are confined to a specific alpha-helical face of TMS 2 and 3, respectively. A Cys at the opposite alpha-helical face of TMS 3 of SecE was found to interact with a neighboring SecE molecule. Formation of this SecE dimer did not affect the high-affinity binding of SecA to SecYEG and ATP hydrolysis, but blocked preprotein translocation and thus uncouples the SecA ATPase activity from translocation. Conditions that prevent membrane deinsertion of SecA markedly stimulated the interhelical contact between the SecE molecules. The latter demonstrates a SecA-mediated modulation of the protein translocation channel that is sensed by SecE.  相似文献   

6.
SecA is the dissociable ATPase subunit of the Escherichia coli preprotein translocase, and cycles in a nucleotide-modulated manner between the cytosol and the membrane. Overproduction of the integral subunits of the translocase, the SecY, SecE and SecG polypeptides, results in an increased level of membrane-bound SecA. This fraction of SecA is firmly associated with the membrane as it is resistant to extraction with the chaotropic agent urea, and appears to be anchored by SecYEG rather than by lipids. Topology analysis of this membrane-associated form of SecA indicates that it exposes a carboxy-terminal domain to the periplasmic face of the membrane.  相似文献   

7.
Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.  相似文献   

8.
F Duong  W Wickner 《The EMBO journal》1999,18(12):3263-3270
prlA mutations in the gene encoding the SecY subunit of the membrane domain of the Escherichia coli preprotein translocase confer many phenotypes: enhanced translocation rates, increased affinity for SecA, diminished requirement for functional leader sequences, reduced proton-motive force (PMF) dependence of preprotein translocation and facilitated translocation of preproteins with folded domains. We now report that both prlA and prlG mutations weaken the associations between the SecY, SecE and SecG subunits of the translocase. This loosened association increases the initiation of translocation by facilitating the insertion of SecA with its bound preprotein but reduces the stimulatory effect of the PMF during the initial step of translocation. Furthermore, the originally isolated prlA4 mutant, which possesses a particularly labile SecYEG complex, acquired a secondary mutation that restored the stability while conserving the flexibility of the complex. Combinations of certain prlA and prlG mutations, known to cause synthetic lethality in vivo, dramatically loosen subunit association and lead to complete disassembly of SecYEG. These findings underscore the importance of the loosened SecYEG association for the Prl phenotypes. We propose a model in which each of the PrlA and PrlG phenotypes derive from this enhanced SecYEG conformational flexibility.  相似文献   

9.
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.  相似文献   

10.
The Sec system   总被引:1,自引:0,他引:1  
Proteins designated to be secreted by Escherichia coli are synthesized with an amino-terminal signal peptide and associate as nascent chains with the export-specific chaperone SecB. Translocation occurs at a multisubunit membrane-bound enzyme termed translocase, which consists of a peripheral preprotein-binding site and an ATPase domain termed SecA, a core heterotrimeric integral membrane protein complex with SecY, SecE and SecG as subunits, and an accessory integral membrane protein complex containing SecD and SecF. Major new insights have been gained into the cascade of preprotein targeting events and the enzymatic mechanism or preprotein translocation. It has become clear that preproteins are translocated in a stepwise fashion involving large nucleotide-induced conformational changes of the molecular motor SecA that propels the translocation reaction.  相似文献   

11.
The preprotein translocase of Escherichia coli is a multisubunit enzyme with two domains, the peripheral membrane protein SecA and the membrane-embedded SecY/E protein. SecY/E has been isolated as a complex of three polypeptides, SecY, SecE, and band 1. We now present four lines of evidence that the active species of SecY/E is composed of a tightly associated complex of these three subunits: 1) antibodies to SecY efficiently precipitate SecY/E activity as well as all three polypeptides; 2) the proportions of SecY, SecE, and band 1 in the immunoprecipitates are the same as in the starting fraction; 3) the immunoprecipitable complex is not disrupted by treatment with either high salt or urea but is disrupted by brief incubation at 20 degrees C, and the kinetics of dissociation of both band 1 and SecE from SecY at 20 degrees C parallel the loss of translocation ATPase activity; 4) upon immunoprecipitation of similar units of activity of translocase from detergent solutions from either wild-type membranes or a SecY and SecE overproducer strain, the SecE and band 1 subunits are recovered in the same proportions. These data establish that the subunits of SecY/E are firmly associated and that it is the associated complex which is active for translocation.  相似文献   

12.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

13.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

14.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

15.
In Escherichia coli, the SecYEG complex mediates the translocation and membrane integration of proteins. Both genetic and biochemical data indicate interactions of several transmembrane segments (TMSs) of SecY with SecE. By means of cysteine scanning mutagenesis, we have identified intermolecular sites of contact between TMS7 of SecY and TMS3 of SecE. The cross-linking of SecY to SecE demonstrates that these subunits are present in a one-to-one stoichiometry within the SecYEG complex. Sites in TMS3 of SecE involved in SecE dimerization are confined to a specific alpha-helical interface and occur in an oligomeric SecYEG complex. Although cross-linking reversibly inactivates translocation, the contact between TMS7 of SecY and TMS3 of SecE remains unaltered upon insertion of the preprotein into the translocation channel. These data support a model for an oligomeric translocation channel in which pairs of SecYEG complexes contact each other via SecE.  相似文献   

16.
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.  相似文献   

17.
Bacteria, Archaea and Eukaryotes have evolved a plethora of mechanisms to translocate proteins across their various membranes. The bacterial Sec pathway is ubiquitous and essential for cell viability and is used by most proteins destined for the inner membrane, the periplasm or beyond. In bacteria, Sec system components include the heterotrimers SecY/SecE/SecG and SecD/SecF/YajC and the peripherally associated ATPase motor SecA. SecA in solution is mainly dimeric. Unexpectedly, structures of SecA dimers from different or even the same bacterium do not have a consistent dimerization interface. Analysis of the functional assembled translocase complexes blurs the picture even further as the functional quaternary state of the SecYEG channel is also disputed. Several experimental approaches tried to define the oligomeric state of SecA during preprotein ‘pushing’ through SecYEG. One high‐resolution SecA–SecYEG complex has been visualized. This snapshot might be a step closer to the actual translocating machinery. Nevertheless, because of the use of detergent, the true quartenary state of the translocase might have been disturbed. Hence, even after this and other studies, several issues remain puzzling. New approaches must be combined with current tools to gain insight into the functionally relevant quartenary states of SecA and SecYEG during preprotein translocation.  相似文献   

18.
F Duong  W Wickner 《The EMBO journal》1997,16(16):4871-4879
Escherichia coli preprotein translocase comprises a membrane-embedded hexameric complex of SecY, SecE, SecG, SecD, SecF and YajC (SecYEGDFyajC) and the peripheral ATPase SecA. The energy of ATP binding and hydrolysis promotes cycles of membrane insertion and deinsertion of SecA and catalyzes the movement of the preprotein across the membrane. The proton motive force (PMF), though not essential, greatly accelerates late stages of translocation. We now report that the SecDFyajC domain of translocase slows the movement of preprotein in transit against both reverse and forward translocation and exerts this control through stabilization of the inserted form of SecA. This mechanism allows the accumulation of specific translocation intermediates which can then complete translocation under the driving force of the PMF. These findings establish a functional relationship between SecA membrane insertion and preprotein translocation and show that SecDFyajC controls SecA membrane cycling to regulate the movement of the translocating preprotein.  相似文献   

19.
Satoh Y  Matsumoto G  Mori H  Ito K 《Biochemistry》2003,42(24):7434-7441
Integral membrane components SecY, SecE, and SecG of protein translocase form a complex in the Escherichia coli plasma membrane. To characterize subunit interactions of the SecYEG complex, a series of SecY variants having a single cysteine in its cytoplasmic (C1-C6) or periplasmic (P1-P5) domain were subjected to site-specific cross-linking experiments using bifunctional agents with thiol-amine reactivity. Experiments using inverted membrane vesicles revealed specific cross-linkings between a cysteine residue placed in the C2 or C3 domain of SecY and the cytosolic lysine (Lys26) near the first transmembrane segment of SecG. These SecY Cys residues also formed a disulfide bond with an engineered cytosolic cysteine at position 28 of SecG. Thus, the C2-C3 region of SecY is in the proximity of the N-terminal half of the SecG cytoplasmic loop. Experiments using spheroplasts revealed the physical proximity of P2 (SecY) and the C-terminal periplasmic region of SecG. In addition, mutations in secG were isolated as suppressors against a cold-sensitive mutation (secY104) affecting the TM4-C3 boundary of SecY. These results collectively suggest that a C2-TM3-P2-TM4-C3 region of SecY serves as an interface with SecG.  相似文献   

20.
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by the integral membrane complex SecYEG and the peripherally bound ATPase SecA. To probe the environment of the cytoplasmic domains of SecY within the SecYEG complex, we introduced single cysteine residues in each of the six cytoplasmic domains. Neighbouring SecY molecules with a single cysteine residue in cytoplasmic domains C1, C2 or C6 formed a disulfide bond upon oxidation. The presence of the disulfide bond between two C2 domains reversibly inhibited protein translocation. Chemical crosslinking showed that the C2 and C3 domains are in close proximity of SecG and chemical modification of the cysteine residue in the C5 domain with N-ethyl-maleimide or fluorescein-5-maleimide inactivates the SecYEG complex. Taken together, our data give novel insights in the interactions between subunits of the SecYEG complex and emphasise the importance of cytoplasmic domain C5 for SecY functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号