首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bioactive natural product peptides have diverse architectures such as non-standard sidechains and a macrocyclic backbone bearing modifications. In vitro translation of peptides bearing these features would provide the research community with a diverse collection of natural product peptide-like molecules with a potential for drug development. The ordinary in vitro translation system, however, is not amenable to the incorporation of non-proteinogenic amino acids or genetic encoding of macrocyclic backbones. To circumvent this problem, flexible tRNA-acylation ribozymes (flexizymes) were combined with a custom-made reconstituted translation system to produce the flexible in vitro translation (FIT) system. The FIT system was integrated with mRNA display to devise an in vitro selection technique, referred to as the random non-standard peptide integrated discovery (RaPID) system. It has recently yielded an N-methylated macrocyclic peptide having high affinity (Kd=0.60 nM) for its target protein, E6AP.  相似文献   

2.
Goto Y  Katoh T  Suga H 《Nature protocols》2011,6(6):779-790
Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to nonproteinogenic ones; thus, specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. Here we describe a protocol that facilitates genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of nonproteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-methyl amino acids, D-amino acids and physiologically stable macrocyclic scaffolds. The facility of the protocol allows a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions. Preparation of flexizymes and tRNA used for genetic code reprogramming, optimization of flexizyme reaction conditions and expression of nonstandard peptides using the FIT system can be completed by one person in approximately 1 week. However, once the flexizymes and tRNAs are in hand and reaction conditions are fixed, synthesis of acyl-tRNAs and peptide expression is generally completed in 1 d, and alteration of a peptide sequence can be achieved by simply changing the corresponding mRNA template.  相似文献   

3.
4.
Flexizymes are de novo ribozymes capable of charging a wide variety of non-natural amino acids on tRNAs. The flexizyme system enables reprogramming of the genetic code by reassigning the codons that are generally assigned to natural amino acids to non-natural residues, and thus mRNA-directed synthesis of non-natural polypeptides can be achieved. In this review, we comprehensively summarize the history of the flexizyme system and its subsequent development into a practical tool. Furthermore, applications to the synthesis of novel biopolymers via genetic code reprogramming and perspectives for future applications are described.  相似文献   

5.
利用全自动氨基酸分析仪测定了传统保肝食品--河蚬汤中的总氨基酸和游离氨基酸含量.结果表明,河蚬汤中含有17种常见(色氨酸在酸解时遭破坏)氨基酸,还有鸟氨酸和牛磺酸两种非蛋白质组成氨基酸,总含量为297.4 mg·g-1.其中鸟氨酸含量最高,占总氨基酸的12.4%,且87%的鸟氨酸以结合态形式存在.河蚬汤中游离氨基酸含量...  相似文献   

6.
Abstract Proteases recognize their endogenous substrates based largely on a sequence of proteinogenic amino acids that surrounds the cleavage site. Currently, several methods are available to determine protease substrate specificity based on approaches employing proteinogenic amino acids. The knowledge about the specificity of proteases can be significantly extended by application of structurally diverse families of non-proteinogenic amino acids. From a chemical point of view, this information may be used to design specific substrates, inhibitors, or activity-based probes, while biological functions of proteases, such as posttranslational modifications can also be investigated. In this review, we discuss current and prospective technologies for application of non-proteinogenic amino acids in protease substrate specificity profiling.  相似文献   

7.
Based on β-turn-like BDNF loops 2 and 4, involved in receptor interaction, cyclic peptide replicas were designed, synthesized and tested. In addition to the native turn residues, the cyclic peptides include a linker unit between the N- and C-termini, selected by molecular modeling among various non-proteinogenic cyclic amino acids. NMR conformational studies showed that most of the cyclic peptides were able to adopt turn-like structures. Several of the analogues displayed significant inhibition of the BDNF-induced TrkB receptor phosphorylation, and hence could be useful templates for developing improved antagonists for this receptor.  相似文献   

8.
Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-Nmethylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer’s and Parkinson’s diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.  相似文献   

9.
Aminoacylation of tRNA is an essential event in the translation system. Although in the modern system protein enzymes play the sole role in tRNA aminoacylation, in the primitive translation system RNA molecules could have catalysed aminoacylation onto tRNA or tRNA-like molecules. Even though such RNA enzymes so far are not identified from known organisms, in vitro selection has generated such RNA catalysts from a pool of random RNA sequences. Among them, a set of RNA sequences, referred to as flexizymes (Fxs), discovered in our laboratory are able to charge amino acids onto tRNAs. Significantly, Fxs allow us to charge a wide variety of amino acids, including those that are non-proteinogenic, onto tRNAs bearing any desired anticodons, and thus enable us to reprogramme the genetic code at our will. This article summarizes the evolutionary history of Fxs and also the most recent advances in manipulating a translation system by integration with Fxs.  相似文献   

10.
In ribosomal translation, the accommodation of aminoacyl-tRNAs into the ribosome is mediated by elongation factor thermo unstable (EF-Tu). The structures of proteinogenic aminoacyl-tRNAs (pAA-tRNAs) are fine-tuned to have uniform binding affinities to EF-Tu in order that all proteinogenic amino acids can be incorporated into the nascent peptide chain with similar efficiencies. Although genetic code reprogramming has enabled the incorporation of non-proteinogenic amino acids (npAAs) into the nascent peptide chain, the incorporation of some npAAs, such as N-methyl-amino acids (MeAAs), is less efficient, especially when MeAAs frequently and/or consecutively appear in a peptide sequence. Such poor incorporation efficiencies can be attributed to inadequate affinities of MeAA-tRNAs to EF-Tu. Taking advantage of flexizymes, here we have experimentally verified that the affinities of MeAA-tRNAs to EF-Tu are indeed weaker than those of pAA-tRNAs. Since the T-stem of tRNA plays a major role in interacting with EF-Tu, we have engineered the T-stem sequence to tune the affinity of MeAA-tRNAs to EF-Tu. The uniform affinity-tuning of the individual pairs has successfully enhanced the incorporation of MeAAs, achieving the incorporation of nine distinct MeAAs into both linear and thioether-macrocyclic peptide scaffolds.  相似文献   

11.
The universal genetic code includes 20 common amino acids. In addition, selenocysteine (Sec) and pyrrolysine (Pyl), known as the twenty first and twenty second amino acids, are encoded by UGA and UAG, respectively, which are the codons that usually function as stop signals. The discovery of Sec and Pyl suggested that the genetic code could be further expanded by reprogramming stop codons. To search for the putative twenty third amino acid, we employed various tRNA identification programs that scanned 16 archaeal and 130 bacterial genomes for tRNAs with anticodons corresponding to the three stop signals. Our data suggest that the occurrence of additional amino acids that are widely distributed and genetically encoded is unlikely.  相似文献   

12.
We propose that glycine was the first amino acid to be incorporated into the genetic code, followed by serine, aspartic and/or glutamic acid—small hydrophilic amino acids that all have codons in the bottom right-hand corner of the standard genetic code table. Because primordial ribosomal synthesis is presumed to have been rudimentary, this stage would have been characterized by the synthesis of short, water-soluble peptides, the first of which would have comprised polyglycine. Evolution of the code is proposed to have occurred by the duplication and mutation of tRNA sequences, which produced a radiation of codon assignment outwards from the bottom right-hand corner. As a result of this expansion, we propose a trend from small hydrophilic to hydrophobic amino acids, with selection for longer polypeptides requiring a hydrophobic core for folding and stability driving the incorporation of hydrophobic amino acids into the code.  相似文献   

13.
l-Methionine sulfoximine (MSO) and dl-Phosphinothricin (PPT), two non-proteinogenic amino acids known as inhibitors of Glutamine Synthetase, cause a dose-dependent increase in the phosphorylation of the mTOR substrate S6 kinase 1. The effect is particularly evident in glutamine-depleted cells, where mTOR activity is very low, but is detectable for PPT also in the presence of glutamine. The stimulation of mTOR activity by either MSO or PPT is strongly synergized by essential amino acids. Thus, the non-proteinogenic amino acids MSO and PPT are mTOR activators.  相似文献   

14.
Amino acids are important nutrients and also serve as signals for diverse signal transduction pathways. Bacteria use chemoreceptors to recognize amino acid attractants and to navigate their gradients. In Escherichia coli two likely paralogous chemoreceptors Tsr and Tar detect 9 amino acids, whereas in Pseudomonas aeruginosa the paralogous chemoreceptors PctA, PctB and PctC detect 18 amino acids. Here, we show that the phytobacterium Pectobacterium atrosepticum uses the three non-homologous chemoreceptors PacA, PacB and PacC to detect 19 proteinogenic and several non-proteinogenic amino acids. PacB recognizes 18 proteinogenic amino acids as well as 8 non-proteinogenic amino acids. PacB has a ligand preference for the three branched chain amino acids L-leucine, L-valine and L-isoleucine. PacA detects L-proline next to several quaternary amines. The third chemoreceptor, PacC, is an ortholog of E. coli Tsr and the only one of the 36 P. atrosepticum chemoreceptors that is encoded in the cluster of chemosensory pathway genes. Surprisingly, in contrast to Tsr, which primarily senses serine, PacC recognizes aspartate as the major chemoeffector but not serine. Our results demonstrate that bacteria use various strategies to sense a wide range of amino acids and that it takes more than one chemoreceptor to achieve this goal.  相似文献   

15.
The genetic code of living organisms has been expanded to allow the site-specific incorporation of unnatural amino acids into proteins in response to the amber stop codon UAG. Numerous amino acids have been incorporated including photo-crosslinkers, chemical handles, heavy atoms and post-translational modifications, and this has created new methods for studying biology and developing protein therapeutics and other biotechnological applications. Here we describe a protocol for reprogramming the amino-acid substrate specificity of aminoacyl-tRNA synthetase enzymes that are orthogonal in eukaryotic cells. The resulting aminoacyl-tRNA synthetases aminoacylate an amber suppressor tRNA with a desired unnatural amino acid, but no natural amino acids, in eukaryotic cells. To achieve this change of enzyme specificity, a library of orthogonal aminoacyl-tRNA synthetase is generated and genetic selections are performed on the library in Saccharomyces cerevisiae. The entire protocol, including characterization of the evolved aminoacyl-tRNA synthetase in S. cerevisiae, can be completed in approximately 1 month.  相似文献   

16.
Bhushan R  Brückner H 《Amino acids》2004,27(3-4):231-247
Summary. The present paper describes characteristics and application of Marfeys reagent (MR) including general protocols for synthesis of the reagent and diastereomers along with advantages, disadvantages and the required precautions. Applications, and comparison with other derivatizing agents, for the resolution of complex mixtures of DL-amino acids, amines and non-proteinogenic amino acids, peptides/amino acids from microorganisms, cysteine residues in peptides, and evaluation of racemizing characteristics have been discussed. Separation mechanisms of resolution of amino acid diastereomers and replacement of Ala–NH2 by suitable chiral moieties providing structural analogs and different chiral variants and their application as a derivatizing agent to examine the efficiency, and reactivity of the reagent have been focussed. Use of MR for preparing CSPs for direct enantiomeric resolution has also been included.On leave from Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India.  相似文献   

17.
In an effort to increase the probability of finding novel peptides in resin-bound combinatorial libraries displaying affinity to various macromolecular targets, we increased the diversity of a solid-phase library considerably by synthesizing multiple structures on each bead – a motif-library – including 45 building blocks. The building blocks consist of L -aa, D -aa and eight hydrophobic non-proteinogenic α-amino acids. A library with the format O-Z0–1-O-Z0–1-O-XX-resin was synthesized giving the four motifs OOOXX, OZOOXX, OOZOXX, OZOZOXX corresponding to 364.500 different motifs (453×4 theoretical combinations). The positions O are defined amino acids while Z represents three mixtures Π, Ω, ϖ, where Π is a mixture of polar and charged residues, Ω is a mixture of aliphatic residues and ϖ is a mixture of aromatic residues. X represents a mixture of all 45 residues. The library was screened with the macromolecular target streptavidin which served as a model receptor. Binding peptides were sequenced by microsequencing. We included small amounts of norvaline and norleucine in the library, which served as index residues to be able to distinguish between LD -amino acids and other residues with the same retention time in the HPLC system. Beads that interact with the receptor were found, and the binding motifs that appeared had no homology to known binding motifs found in either L -aa or D -aa libraries, instead motifs with the non-proteinogenic residues L -phenylglycine, O-benzyl-L -hydroxyproline and O-benzyl-L -tyrosine dominated. The novel peptides inhibit binding of biotin to streptavidin but do not bind to avidin, and the affinity is higher than the peptides found in linear all L -aa peptide libraries. © 1997 European Peptide Society and John Wiley & Sons, Ltd  相似文献   

18.
Conformationally restricted amino acids are important components in peptidomimetics and drug design. Herein, we describe the synthesis of a novel, non-proteinogenic constrained delta amino acid containing a cyclobutane ring, cis-3(aminomethyl)cyclobutane carboxylic acid (ACCA). The synthesis of the target amino acid was achieved in seven steps, with the key reaction being a base induced intramolecular nucleophilic substitution. A small library of dipeptides was prepared through the coupling of ACCA with proteinogenic amino acids.  相似文献   

19.
The non-proteinogenic amino acids capreomycidine and epicapreomycidine are constituents of antibiotically active natural products, but the synthesis of these unusual cyclic guanidine derivatives is challenging. The biosynthesis of capreomycidine has therefore been employed as a guideline to develop a concise biomimetic synthesis of both epimeric amino acids. The resulting domino-guanidinylation-aza-Michael-addition reaction provides the most convenient access to these amino acids in racemic form. Attempts to dissect the domino reaction into two separate transformations for a stereocontrolled version of this synthetic approach have also been made. The synthesized didehydro-arginine derivatives with urethane-protected guanidine moieties did not undergo the aza-Michael-addition anymore. These results may have wider implications for the 1,4-addition of guanidines to α,β-unsaturated carbonyl compounds, particularly to didehydro amino acids.  相似文献   

20.
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号