首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and analytical ultracentrifugation. The maximum of the protein thermal transition (T(m)) increased with increasing the protein concentration, suggesting that the denaturation process involves the stage of reversible dissociation of the enzyme tetramer into the oligomeric forms of lesser size. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. The DLS data support the mechanism of protein aggregation that involves a stage of the formation of the start aggregates followed by their sticking together. The hydrodynamic radius of the start aggregates remained constant in the temperature interval from 37 to 55 degrees C and was independent of the protein concentration (R(h,0) approximately 21 nm; 10 mM sodium phosphate, pH 7.5). A strict correlation between thermal aggregation of GAPDH registered by the increase in the light scattering intensity and protein denaturation characterized by DSC has been proved.  相似文献   

2.
The study of thermal denaturation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of alpha-crystallin by differential scanning calorimetry (DSC) showed that the position of the maximum on the DSC profile (T(max)) was shifted toward lower temperatures with increasing alpha-crystallin concentration. The diminishing GAPDH stability in the presence of alpha-crystallin has been explained assuming that heating of GAPDH induces dissociation of the tetrameric form of the enzyme into dimers interacting with alpha-crystallin. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. Suppression of thermal aggregation of GAPDH by alpha-crystallin was studied by dynamic light scattering under the conditions wherein temperature was elevated at a constant rate. The construction of the light scattering intensity versus the hydrodynamic radius (R(h)) plots enabled estimating the hydrodynamic radius of the start aggregates (R(h,0)). When aggregation of GAPDH was studied in the presence of alpha-crystallin, the start aggregates of lesser size were observed.  相似文献   

3.
Precipitation of alpha chymotrypsin in the simultaneous presence of ammonium sulphate and t-butanol (three phase partitioning) resulted in preparations which showed self aggregation of the enzyme molecules. Precipitation with increasing amounts of ammonium sulphate led to increasing size of aggregates. While light scattering estimated the hydrodynamic diameter of these aggregates in the range of 242–1124 nm; Nanoparticle tracking analysis (NTA) gave the value as 130–462 nm. Scanning electron microscopy and gel filtration on Sephadex G-200 showed extensive aggregation in these preparations. Transmission electron microscopy showed that the aggregates had irregular shapes. All the aggregates had about 3× higher catalytic activity than the native enzyme. These aggregates did not differ in λmax of fluorescence emission which was around 340 nm. However, all the aggregates showed higher fluorescence emission intensity. Far-UV and near-UV circular dichroism also showed no significant structural changes as compared to the native molecule. Interestingly, HPLC gel filtration (on a hydroxylated silica column) gave 14 nm as the diameter for all preparations. Light scattering of preparations in the presence of 10% ethylene glycol also dissociated the aggregates to monomers of 14 nm. Both these results indicated that hydrophobic interactions were the driving force behind this aggregation. These results indicate: (1) Even without any major structural change, three phase partitioning led to protein molecules becoming highly prone to aggregation. (2) Different methods gave widely different estimates of sizes of aggregates. It was however possible to reconcile the data obtained with various approaches. (3) The nature of the gel filtration column is crucial and use of this technique for refolding and studying aggregation needs a rethink.  相似文献   

4.
The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.  相似文献   

5.
The process of platelet aggregation as detected by turbidity changes in the platelet aggregometer was studied relative to light scattering by large particles. For latex beads a plot of light scattering intensity/unit mass versus particle size gave increased light scattering intensity for small particle sizes but decreased scattering at large particle size. This behavior is predicted by Rayleigh-Gans theory. These results were related to the platelet aggregometer, an optical instrument used to measure the association of small particles (monomeric platelets) to large particles (platelet aggregates). Formalin-fixed platelets do not show changes in light transmission due to energy-requiring processes, such as shape change, so that turbidity changes in the presence of aggregating agents could be attributed to a change in platelet aggregation state. Small platelet aggregates showed increased turbidity compared to a similar mass of monomeric platelets. In fact, very large platelet aggregates that were visible to the unaided eye were needed to produce a decrease in light scattering intensity. Thus, turbidity can either increase or decrease with platelet aggregation depending on the size of the aggregates. Studies of platelet aggregation that show no initial increase in turbidity must be characterized by dominance of large platelet aggregates and monomeric platelets.  相似文献   

6.
To obtain large amounts of deglycosylated procarboxypeptidase Y (proCPY), in which all of the N-glycosylation sites were replaced by alanine residue by the point mutation method, an expression system was constructed using Pichia pastoris. The secreted enzyme was characterized by SDS-PAGE, native PAGE, MALDI-TOF mass spectrometry, and dynamic light scattering, and the results indicated heterogeneity. The recombinant proCPY contained 29 mol of glucose per mole of protein in average, according to the carbohydrate analysis by the phenol-sulfuric acid method. A large part of the recombinant enzyme absorbed on a Con A column: even the break-through fraction of the column contained 3 mol of glucose per mole of protein. These carbohydrates were removed by the mild alkaline treatment. Since the entire N-glycosylation site had been destructed in the present expression system, the carbohydrates contained in the recombinant proCPY are concluded to be O-linked ones, which bound indiscriminately to serine and/or threonine residues.  相似文献   

7.
Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation.  相似文献   

8.
In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme’s specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme’s isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 μg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.  相似文献   

9.
Thermal denaturation and aggregation of beta(L)-crystallin from bovine lens have been studied using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the DLS data, the distribution of the beta(L)-crystallin aggregates by their hydrodynamic radius (R(h)) remains monomodal to the point of precipitating aggregates (sodium phosphate, pH 6.8; 100 mM NaCl; 60 degrees C). The size of the start aggregates (R(h,0)) and duration of the latent stage (t(0)) leading to the formation of the start aggregates have been determined from the light scattering intensity versus the hydrodynamic radius plots and the dependences of R(h) on time. The R(h,0) value remains constant at variation of the beta(L)-crystallin concentration, whereas the t(0) value increases with diminishing beta(L)-crystallin concentration. The suppression of beta(L)-crystallin aggregation by alpha-crystallin is connected with the decrease in the R(h,0) value and increase in the t(0) value. In the presence of alpha-crystallin the aggregate population is split into two components. The first component is represented by stable aggregates whose size remains constant in time. The aggregates of the other kind grow until they reach the size characteristic of aggregates prone to precipitation. The DSC data show that alpha-crystallin has no appreciable influence on thermal denaturation of beta(L)-crystallin.  相似文献   

10.
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key enzyme for the biosynthesis of sialic acids, the terminal sugars of glycoconjugates associated with a variety of physiological and pathological processes such as cell adhesion, development, inflammation and cancer. In this study, we characterized rat GNE by different biophysical methods, analytical ultracentrifugation, dynamic light-scattering and size-exclusion chromatography, all revealing the native hydrodynamic behavior and molar mass of the protein. We show that GNE is able to reversibly self-associate into different oligomeric states including monomers, dimers and tetramers. Additionally, it forms non-specific aggregates of high molecular mass, which cannot be unequivocally assigned a distinct size. Our results also indicate that ligands of the epimerase domain of the bifunctional enzyme, namely UDP-N-acetylglucosamine and CMP-N-acetylneuraminic acid, stabilize the protein against aggregation and are capable of modulating the quaternary structure of the protein. The presence of UDP-N-acetylglucosamine strongly favors the tetrameric state, which therefore likely represents the active state of the enzyme in cells.  相似文献   

11.
Several bacteria use trimethylamine N-oxyde (TMAO) as an exogenous electron acceptor for anaerobic respiration. This metabolic pathway involves expression of the tor operon that codes for a periplasmic molybdopterin-containing reductase of the DMSO/TMAO family, a pentahemic c-type cytochrome, and the TorD cytoplasmic chaperone, possibly required for acquisition of the molybdenum cofactor and translocation of the reductase by the twin-arginine translocation system. In this report, we show that the TorD chaperone from Shewanella massilia forms multiple and stable oligomeric species. The monomeric, dimeric, and trimeric forms were purified to homogeneity and characterized by analytical ultracentrifugation. Small-angle X-ray scattering (SAXS) and preliminary diffraction data indicated that the TorD dimer is made of identical protein modules of similar size to the monomeric species. Interconversion of the native oligomeric forms occurred at acidic pH value. In this condition, ANS fluorescence indicates a non-native conformation of the polypeptide chain in which, according to the circular dichroism spectra, the alpha-helical content is similar to that of the native species. Surface plasmon resonance showed that both the monomeric and dimeric species bind the mature TorA enzyme, but that the dimer binds its target protein more efficiently. The possible biologic significance of these oligomers is discussed in relation to the chaperone activity of TorD, and to the ability of another member of the TorD family to bind the Twin Arginine leader sequences of the precursor of DMSO/TMAO reductases.  相似文献   

12.
Photoreversible changes in the conformation and enzymatic activity of bovine carbonic anhydrase have been investigated as a function of photoresponsive surfactant concentration and light conditions. The light-responsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to photoreversibly control enzyme–surfactant interactions. Small-angle neutron scattering and dynamic light scattering measurements, along with fluorescence spectroscopy, indicate that carbonic anhydrase unfolds upon addition of the surfactant under visible light, while only a small degree of unfolding is observed under UV light. Therefore, the enzyme is completely inactivated in the presence of the trans surfactant, while 40% of the native activity is preserved under UV light, providing a photoreversible “on/off switch” of enzyme activity. Small-angle neutron scattering data provide details of the in vitro conformational changes of the enzyme in response to the photosurfactant and light, with the enzyme found to aggregate as a result of photosurfactant-induced unfolding. Fourier transform infrared (FT-IR) spectroscopy further provides information on the secondary structure changes of the protein in the presence of photosurfactant.  相似文献   

13.

Background and Aims

Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls.

Methods

Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction.

Key Results

It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly.

Conclusions

These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls.  相似文献   

14.
The supramolecular aggregation of alpha-crystallin, the major protein of the eye lens, was investigated by means of static and dynamic light scattering. The aggregation was induced by generating heat-modified alpha-crystallin forms and by stabilizing the clusters with calcium ions. The kinetic pattern of the aggregation and the structural features of the clusters can be described according to the reaction limited cluster-cluster aggregation theory previously adopted for the study of colloidal particles aggregation systems. Accordingly, the average mass and the hydrodynamic radius of alpha-crystallin supramolecular aggregates grow exponentially in time. The structure factor of the clusters is typical of fractal aggregates. A fractal dimension df approximately 2.15 was determined, indicating a low probability of sticking together of the primitive aggregating particles. As a consequence, the slow-forming clusters assemble a rather compact structure. The basic units forming the fractal aggregates were found to have a radius about twice (approximately 17 nm) that of the native protein and 5.3 times its size, which is consistent with an intermediate molecular assembly corresponding to the already known high molecular weight forms of alpha-crystallin.  相似文献   

15.
16.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates.  相似文献   

17.
Careful analysis of sub-visible amorphous aggregates, where proteins associate non-covalently in either native or denatured states without forming a specific quaternary structure, may shed insight into the mechanisms of protein aggregation and solubility. Here we report a biophysical and biochemical analysis of our model protein, a bovine pancreatic trypsin inhibitor variant (BPTI-19A), whose oligomerization were controlled by attaching solubility controlling peptide tags (SCP tags) to its C terminus, which are short peptides composed of a single type of amino acid that modulate protein solubility. The dynamic light scattering and static light scattering at 25 °C indicated that 11 out of 15 SCP tags merely affected the hydrodynamic radius and light scattering intensity of our reference variants BPTI-19A and BPTI-C2G. On the other hand, hydrophobic SCP tags composed of 5 Ile (C5I) or 5 Leu (C5L) were associated into sub-visible aggregates. Circular dichroism indicated that all tagged BPTI variants had the same secondary structure contents as the reference BPTI-19A at 25 °C, suggesting that BPTI-C5I and C5L kept their native structure upon association. Furthermore, the thermal denaturation of all of the BPTI variants was fully reversible and typical of natively folded small globular proteins, as monitored by CD at 222 nm. However, the thermal stability of BPTI-19A tagged with hydrophobic residues decreased with increasing protein concentration and tag's hydrophobicity, and BPTI-C5I and C5L were partially denatured at 37 °C. Biochemical stability assessed by limited proteolysis with pepsin correlated with the extent of the variants' aggregation, and the large sub-visible aggregates formed by BPTI-C5I and C5L significantly increased their resistance to pepsin proteolysis. Altogether, these observations indicated that hydrophobic SCP tags led to the reversible association of native-like proteins into sub-visible soluble amorphous aggregates resistant to pepsin digestion.  相似文献   

18.
The intensity autocorrelation functions of light scattered by lysozyme solutions under pre-crystallization conditions in NaCl-containing media were recorded at scattering angles from 20 degrees to 90 degrees. The measurements, conducted on freshly prepared protein solutions supersaturated more than 3-fold, indicate the simultaneous presence of two scatterer populations which can be assigned to individual protein molecules and to large particles. When solutions are undersaturated, or slightly supersaturated, light scattering only reveals the presence of the small scatterers. In the supersaturated medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are medium, where aggregates were detected, lysozyme crystals grew in a time-span of 1-3 days after the scattering experiments. These results are correlated with the nucleation step during protein crystallization.  相似文献   

19.
Mechanisms of enzyme inactivation and aggregation are still poorly understood. In this work, we are considering the characterisation of both inactivation and aggregation in stirred tank reactor, with lysozyme as the model enzyme.

The inactivation kinetics are first order. For stirring speeds in the range of 0–700 rpm, the kinetic constant is found to be proportional to the power brought by the impeller. It suggests that inactivation depends on collisions between enzyme molecules. Efficient collisions between native and inactive molecules induce native molecules to turn into inactive molecules and lead to lysozyme aggregation.

During inactivation, enzymes are found to aggregate as shown by light scattering measurements. The structure of aggregates was studied on samples treated for chemical denaturation and reduction. The aggregates are supramolecular edifices, mainly made up of inactivated enzymes linked by weak forces. But aggregates are also made up of dimers and trimers of lysozyme, linked by disulfide bridges. Dimers and trimers are 18% and 5%, respectively, of the total amount of lysozyme aggregates.

Whatever the stage of aggregate formation and the initial enzyme concentration are, these aggregates are irreversibly inactivated. Enzyme activity is definitely lost even if stirring is stopped and/or temperature decreased.

This study points out the importance of hydrodynamics in bioreactors and highlights the nature of the aggregates resulting from the interactions between native and inactive enzymes.  相似文献   


20.
Lumazine synthases have been observed in the form of pentamers, dimers of pentamers, icosahedral capsids consisting of 60 subunits and larger capsids with unknown molecular structure. Here we describe the analysis of the assembly of native and mutant forms of lumazine synthases from Bacillus subtilis and Aquifex aeolicus at various pH values and in the presence of different buffers using small angle X-ray scattering and electron microscopy. Both wild-type lumazine synthases are able to form capsids with a diameter of roughly 160 A and larger capsids with diameters of around 300 A. The relative abundance of smaller and larger capsids is strongly dependent on buffer and pH. Both forms can co-exist and are in some cases accompanied by other incomplete or deformed capsids. Several mutants of the B. subtilis lumazine synthase, in which residues in or close to the active site were replaced, as well as an insertion mutant of A. aeolicus lumazine synthase form partially or exclusively larger capsids with a diameter of about 300 A. The mutations also reduce or inhibit enzymatic activity, suggesting that the catalytic function of the enzyme is tightly correlated with its quaternary structure. The data show that multiple assembly forms are a general feature of lumazine synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号