首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

2.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

3.
D Leckband  G G Hammes 《Biochemistry》1988,27(10):3629-3633
The kinetic behavior of tightly bound nucleotides on chloroplast coupling factor from spinach was determined under phosphorylating and nonphosphorylating conditions. Chloroplast coupling factor 1 (CF1) was labeled with tightly bound radioactive ADP and/or ATP at two specific sites and reconstituted with thylakoid membranes depleted of CF1 by treatment with NaBr. The initial incorporation and dissociation of ADP from one of the sites requires light but occurs at the same rate under phosphorylating and non-phosphorylating conditions. The initial rate is considerably slower than the rate of ATP synthesis, but nucleotide exchange is very rapid during steady-state ATP synthesis. A direct correspondence between this nucleotide binding site and a site on soluble CF1 that hydrolyzes ATP was demonstrated. A second site binds MgATP very tightly; the MgATP does not dissociate during ATP synthesis nor does its presence alter the rate of ATP synthesis. This is analogous to the behavior found for soluble CF1 during ATP hydrolysis. These results demonstrate that the tight-binding nucleotide sites on soluble CF1 and membrane-bound coupling factor are essentially identical in terms of binding properties and kinetic behavior during ATP hydrolysis and synthesis.  相似文献   

4.
It was shown that gamma-irradiation of Zajdela hepatoma cells (10 Gy) induces inhibition of DNA synthesis initiation at a nuclear matrix and a change in its DNA-protein content. Irradiation of hepatoma cells with 10 and 50 Gy decreases incorporation of newly synthesized proteins in the firmly bound DNA-protein complexes of nuclear matrix. After 60-120 min postirradiation incubation of cells at 37 degrees C DNA-protein content of the nuclear matrix and its firmly bound DNA-protein complexes are restored. However the rate of DNA synthesis initiation being below the control level.  相似文献   

5.
The exchange of actin filament subunits for unpolymerized actin or for subunits in other filaments has been quantitated by three experimental techniques: fluorescence energy transfer, incorporation of 35S-labeled actin monomers into unlabeled actin filaments, and exchange of [14C]ATP with filament-bound ADP. In the fluorescence energy transfer experiments, actin labeled with 5-(iodoacetamidoethyl)aminonaphthalene- 1-sulfonic acid (IAENS) served as the fluorescent energy donor, and actin labeled with either fluorescein-5-isothiocyanate (FITC) or fluorescein-5-maleimide (FM) served as the energy acceptor. Fluorescent- labeled actins from Dictyostelium amoebae and rabbit skeletal muscle were very similar to their unlabeled counterparts with respect to critical actin concentration for filament assembly, assembly rate, ATP hydrolysis upon assembly, and steady-state ATPase. As evidenced by two different types of fluorescence energy transfer experiments, less than 5% of the actin filament subunits exchanged under a variety of buffer conditions at actin concentrations greater than 0.5 mg/ml. At all actin concentrations limited exchange to a plateau level occurred with a half- time of about 20 min. Nearly identical results were obtained when exchange was quantitated by incorporation of 35S-labeled Dictyostelium actin monomers into unlabeled muscle actin or Dictyostelium actin filaments. Furthermore, the proportion of filament-bound ADP which exchanged with [14C]-ATP was nearly the same as actin subunit exchange measured by fluorescence energy transfer and 35S-labeled actin incorporation. These experiments demonstrate that under approximately physiologic ionic conditions only a small percentage of subunits in highly purified skeletal muscle or Dictyostelium F-actin participate in exchange.  相似文献   

6.
Quantitative predictions of steady-state muscle properties from the strain-dependent cross-bridge for muscle are presented. With a stiffness of 5.4 x 10(-4) N/m per head, a throw distance of 11 nm, and three allowed actin sites/head, isometric properties and their dependence on phosphate and nucleotide levels are well described if the tension-generating step occurs before phosphate release. At very low ATP levels, rigorlike states with negative strain are predicted. The rate-limiting step for cycling and ATP consumption is strain-blocked ADP release for isometric and slowly shortening muscle. Under rapid shortening, ATP hydrolysis on detached heads is the rate-limiting step, and the ratio of bound ATP to bound ADP.Pi increases by a factor of 7. At large positive strains, bound heads must be forcibly detached from actin to account for tension in rapid extension, but forced detachment in shortening has no effect without destroying isometric attached states. Strain-blocked phosphate release as proposed produces modest inhibition of the ATPase rate under rapid shortening, sufficient to give a maximum for one actin site per helix turn. Alternative cross-bridge models are discussed in the light of these predictions.  相似文献   

7.
The extent of actin polymerization has been studied for samples in which the bound nucleotide of the actin was ATP, ADP, or an analog of ATP that was not split (AMPPNP). The equilibrium constants for the addition of a monomer to a polymer end were determined from the concentration of monomer coexisting with the polymer. An analysis of these results concludes that the bound ATP on G-actin provides little energy to promote the polymerization of the actin. AMPPNP was incorporated into F-actin and the interaction of F-actin · AMPPNP with myosin was studied. F-actin · AMPPNP activated the ATPase of myosin to the same extent as did F-actin · ADP. However, the rate of superprecipitation was slower in the case of F-actin · AMPPNP than in the control.  相似文献   

8.
Calcium activates full-length myosin Va steady-state enzymatic activity and favors the transition from a compact, folded "off" state to an extended "on" state. However, little is known of how a head-tail interaction alters the individual actin and nucleotide binding rate and equilibrium constants of the ATPase cycle. We measured the effect of calcium on nucleotide and actin filament binding to full-length myosin Va purified from chick brains. Both heads of nucleotide-free myosin Va bind actin strongly, independent of calcium. In the absence of calcium, bound ADP weakens the affinity of one head for actin filaments at equilibrium and upon initial encounter. The addition of calcium allows both heads of myosin Va.ADP to bind actin strongly. Calcium accelerates ADP binding to actomyosin independent of the tail but minimally affects ATP binding. Although 18O exchange and product release measurements favor a mechanism in which actin-activated Pi release from myosin Va is very rapid, independent of calcium and the tail domain, both heads do not bind actin strongly during steady-state cycling, as assayed by pyrene actin fluorescence. In the absence of calcium, inclusion of ADP favors formation of a long lived myosin Va.ADP state that releases ADP slowly, even after mixing with actin. Our results suggest that calcium activates myosin Va by allowing both heads to interact with actin and exchange bound nucleotide and indicate that regulation of actin binding by the tail is a nucleotide-dependent process favored by linked conformational changes of the motor domain.  相似文献   

9.
The role of the bound nucleotide in the polymerization of actin.   总被引:12,自引:0,他引:12  
R Cooke 《Biochemistry》1975,14(14):3250-3256
Three mucleotides, ATP, ADP, and an unsplit-table analog of ATP (adenylyl imidodiphosphate (AMPPNP)), were bound to monomeric actin, and their effects on the rate and extent of the actin polymerization were studied. The kinetics of polymerization, assayed by the change in OD232, followed a simple exponential curve. The rates of polymerization were equal for bound ATP and AMPPNP; both of which were three to five times faster than the rate for ADP. The concentration of actin monomers in apparent equilibrium with the polymer, G(180 degrees longitude), was determined. Values of G(180 degrees longitude) in 100 mM KCl were found for different nucleotides to be: G-ATP(180 degrees longitude) = 0.7 mu-M, G-AMPPNP(180 degrees longitude) = 0.8 MU-M, and G-ADP(180 degrees longitude) = 3.4 mu-M. The equilibrium constant of the polymerization is given by K = [G(180 degrees longitude)]-minus 1 when no nucleotide is split. The polymerization of actin-ATP is more complex due to the splitting of the nucleotide and our data require that this polymerization involves more than one step. The kinetic parameters for the polymerization of actin-ATP can be explained by a simple scheme in which the nucleotide dephosphorylation occurs in a step following the polymerization step. The conclusions are: (1) the binding of ATP to actin monomer promotes polymerization slightly more than the binding of ADP, (2) actin bound ATP provides less than 4 kJ/mol of free energy to promote polymerization, and (3) the dephosphorylation of the nucleotide is not coupled to polymerization.  相似文献   

10.
The effect of ADP and phosphorylation upon the actin binding properties of heavy meromyosin was investigated using three fluorescence methods that monitor the number of heavy meromyosin heads that bind to pyrene-actin: (i) amplitudes of ATP-induced dissociation, (ii) amplitudes of ADP-induced dissociation of the pyrene-actin-heavy meromyosin complex, and (iii) amplitudes of the association of heavy meromyosin with pyrene-actin. Both heads bound to pyrene-actin, irrespective of regulatory light chain phosphorylation or the presence of ADP. This behavior was found for native regulated heavy meromyosin prepared by proteolytic digestion of chicken gizzard myosin with between 5 and 95% heavy chain cleavage at the actin-binding loop, showing that two-head binding is a property of heavy meromyosin with uncleaved heavy chains. These data are in contrast to a previous study using an uncleaved expressed preparation (Berger, C. E., Fagnant, P. M., Heizmann, S., Trybus, K. M., and Geeves, M. A. (2001) J. Biol. Chem. 276, 23240-23245), which showed that one head of the unphosphorylated heavy meromyosin-ADP complex bound to actin and that the partner head either did not bind or bound weakly. Possible explanations for the differences between the two studies are discussed. We have shown that unphosphorylated heavy meromyosin appears to adopt a special state in the presence of ADP based upon analysis of actin-heavy meromyosin association rate constants. Data were consistent with one head binding rapidly and the second head binding more slowly in the presence of ADP. Both heads bound to actin at the same rate for all other states.  相似文献   

11.
Influence of the bound nucleotide on the molecular dynamics of actin   总被引:1,自引:0,他引:1  
Rotational dynamics of actin spin-labelled with maleimide probes at the reactive thiol Cys-374 were studied. Replacement of the bound nucleotide by Br8ATP in G-actin and Br8ADP in F-actin causes significant increase of the rotational correlation time of the spin probe, indicating reduced motion in both G and F-actin. The orientation dependence of the electron paramagnetic resonance spectra in oriented F-actin filaments revealed an altered molecular order of the probe when the nucleotide was a Br-substituted one. The bound nucleotide affects the myosin S1 ATPase activation by actin; both Vmax and K(actin) decreased significantly when the bound nucleotide of actin was Br8ADP.  相似文献   

12.
T Ohm  A Wegner 《Biochemistry》1991,30(47):11193-11197
The equilibrium of the copolymerization of ATP-actin and ADP-actin was investigated by an analysis of the critical concentrations of mixtures of ATP-actin and ADP-actin. The molar ratio of bound ATP to bound ADP was controlled by the ratio of free ATP and ADP. The experiments were performed under conditions (100 mM KCl, l mM MgCl2, pH 7.5, 25 degrees C) where the ATP hydrolysis following binding of actin monomers to barbed filament ends was so slow that the distribution of ATP or ADP bound to the subunits near the ends of filaments was not affected by ATP hydrolysis. According to the analysis of the critical concentrations, the equilibrium constants for incorporation of ATP-actin or ADP-actin into filaments were independent of the type of nucleotide bound to contiguous subunits.  相似文献   

13.
Isolation and characterization of covalently cross-linked actin dimer   总被引:5,自引:0,他引:5  
Covalently cross-linked actin dimer was isolated from rabbit skeletal muscle F-actin reacted with phenylenebismaleimide (Knight, P., and Offer, G. (1978) Biochem. J. 175, 1023-1032). The UV spectrum of the purified cross-linked actin dimer, in a nonpolymerizing buffer, was very similar to that of native F-actin and not to the spectrum of G-actin. Cross-linked actin dimer polymerized to filaments that were indistinguishable in the electron microscope from F-actin made from native G-actin and that were similar to native F-actin in their ability to activate the Mg2+-ATPase of myosin subfragment-1. The critical concentrations of polymerization of cross-linked actin dimer in 0.5 mM and 2.0 mM MgCl2, 2 to 4 microM, and 1 to 2 microM, respectively, were similar to the values for native G-actin. Cross-linked actin dimer contained 2 mol of bound nucleotide/mol of dimer. One bound nucleotide exchanged with ATP in solution with a t 1/2 of 55 min and with ADP with a t 1/2 of 5 h. The second bound nucleotide exchanged much more slowly. The more rapidly exchangeable site contained 10 to 15% bound ADP.Pi and 85 to 90% bound ATP while the second site contained much less, if any, bound ADP.Pi. Cross-linked actin dimer had an ATPase activity in 0.5 mM MgCl2 that was 7 times greater than the ATPase activity of native G-actin and that was also stimulated by cytochalasin D. These data are discussed in relation to the possible role of ATP in actin polymerization and function with the speculation that the cross-linked actin dimer may serve simultaneously as a useful model for each of the two different ends of native F-actin.  相似文献   

14.
In the rat heart the actin-bound nucleotide contained both ATP and ADP. The ratio of bound ATP to bound ADP depended on the functional state of the heart; it was higher in hearts stopped reversibly in diastole (low Ca(2+), high Mg(2+), or high K(+)), than in stimulated (inotropic agents or pacing) hearts. Immunoblotting and gel electrophoresis showed the existence of G-actin (30% of total actin) in the cytoplasm of the heart. Pure actin was isolated from rat hearts: in G-actin the bound nucleotide readily exchanged with ATP or ADP, and in F-actin the bound nucleotide did not exchange with ATP or ADP. The free and bound nucleotides were separated in the intact heart by extraction with 75% methanol at -15 degrees C. In rat hearts perfused with (32)P-labeled orthophosphate the actin-bound nucleotide rapidly exchanged with the cytoplasmic ATP. The full exchange of the bound ATP was immediate, whereas the full exchange of the bound ADP was slower. The full exchange of the bound ATP was independent of the heartbeat frequency, whereas the full exchange of the bound ADP was frequency dependent. The data suggest that the transformation of actin monomer-ATP to actin polymer-ADP is a part of the normal contraction-relaxation cycle of the rat heart.  相似文献   

15.
Chromatophores of Rhodospirillum rubrum were preincubated with 32Pi in the absence of added nucleotides. Particles and reaction mixture were then separated by sucrose density gradient centrifugation. The labeled chromatophores thus obtained esterify 32Pi into acid-soluble ATP (ATPas) on the addition of ADP in the dark. Additional firmly bound ATP (ATPfb) can be liberated on sodium dodecylsulfate treatment. Coinciding with the formation of acid-soluble ATP there is a decrease in the amount of firmly bound ATP. The isotopic concentration experiments in which labeled chromatophores were incubated with carrier-free 32Pi and ADP in the dark, show that ATPas might arise from ATPfb not by a direct γ-phosphate transfer but by an esterification of the added ADP and free phosphate with a concomitant hydrolysis of the ATPfb. On this basis we have proposed a new working hypothesis for the last step of electron transport-linked phosphorylations. It includes the following reactions: + P*i → P* (i.e., ATPfb) P* + ADP + P**i → ATP**as + P*i

The hypothesis is compatible with the concept of conformational energy conservation.  相似文献   


16.
C Frieden  K Patane 《Biochemistry》1985,24(15):4192-4196
The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.  相似文献   

17.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

18.
Recent results suggest consideration of a new concept for oxidative phosphorylation in which a prime function of energy is to bring about release of ATP formed at the catalytic site by reversal of hydrolysis. Data with submitochondrial particles include properties of an uncoupler insensitive Pi=HOH exchange, a rapid reversible formation of bound ATP in presence of uncouplers, and predictable patterns of 32-Pi incorporation into ATP in rapid mixing experiments. ADP is confirmed as the primary Pi acceptor in mitochondrial ATP synthesis, but with chloroplasts ADP is also rapidly labeled. Other findings with pyrophosphatase and with transport ATPase harmonize with the new concept. Measurements of the reversal of ATP cleavage and binding by myosin suggest that oxygen exchanges result from reversible cleavage of ATP to ADP and Pi at the catalytic site and that the principal free energy change in ATP cleavage occurs in ATP binding. Reversal of conformational changes accompanying ATP binding and cleavage is proposed to drive the actin filament in contraction. Thus energy transductions linked to ATP in both mitochondria and muscle may occur primarily through protein conformational change.  相似文献   

19.
We reported the purification and characterization of an arginine-specific ADP-ribosyltransferase and acceptor protein p33 in granules of chicken peripheral polymorphonuclear leukocytes (heterophils) [Mishima, K., Terashima, M., Obara, S., Yamada, K., Imai, K. & Shimoyama, M. (1991) J. Biochem. (Tokyo) 110, 388-394]. In the present study, we obtained evidence that chicken non-muscle beta/gamma-actin, skeletal muscle alpha-actin and smooth-muscle gamma-actin were ADP ribosylated by the heterophil ADP-ribosyltransferase. The stoichiometry of ADP-ribose incorporation into these actins was 1.2 mol, 1.0 mol and 2.0 mol ADP-ribose/mol of beta/gamma-actin, alpha-actin and gamma-actin, respectively. The optimal pH for the ADP ribosylation was at pH 8.5, with the respective actin. Km values for NAD were calculated to be 30 microM with beta/gamma-actin, 35 microM with alpha-actin and 20 microM with gamma-actin. The Km values for the actin isoforms were 15 microM for beta/gamma-actin, 2.5 microM for alpha-actin and 10 microM for gamma-actin. ADP ribosylation of actin inhibited its capacity to polymerize, as determined by the increase in fluorescence intensity with N-(1-pyrenyl)iodoacetamide-labelled actin. Filamentous actin (F-actin) polymerized with the respective actin isoform was also ADP ribosylated, although the extent of the modification of F-actin was lower than that of globular actin (G-actin). In situ ADP ribosylation of beta/gamma-actin was evidenced with chicken peripheral heterophils permeabilized with saponin. Thus, the endogenous ADP ribosylation of actin in the heterophils may be involved in the cellular processes such as phagocytosis, secretion and migration.  相似文献   

20.
The [Mg(2+)] dependence of ADP binding to myosin V and actomyosin V was measured from the fluorescence of mantADP. Time courses of MgmantADP dissociation from myosin V and actomyosin V are biphasic with fast observed rate constants that depend on the [Mg(2+)] and slow observed rate constants that are [Mg(2+)]-independent. Two myosin V-MgADP states that are in reversible equilibrium, one that exchanges nucleotide and cation slowly (strong binding) and one that exchanges nucleotide and cation rapidly (weak binding), account for the data. The two myosin V-MgADP states are of comparable energies, as indicated by the relatively equimolar partitioning at saturating magnesium. Actin binding lowers the affinity for bound Mg(2+) 2-fold but shifts the isomerization equilibrium approximately 6-fold to the weak ADP binding state, lowering the affinity and accelerating the overall rate of MgADP release. Actin does not weaken the affinity or accelerate the release of cation-free ADP, indicating that actin and ADP binding linkage is magnesium-dependent. Myosin V and myosin V-ADP binding to actin was assayed from the quenching of pyrene actin fluorescence. Time courses of myosin V-ADP binding and release are biphasic, consistent with the existence of two (weak and strong) quenched pyrene actomyosin V-ADP conformations. We favor a sequential mechanism for actomyosin V dissociation with a transition from strong to weak actin-binding conformations preceding dissociation. The data provide evidence for multiple myosin-ADP and actomyosin-ADP states and establish a kinetic and thermodynamic framework for defining the magnesium-dependent coupling between the actin and nucleotide binding sites of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号