首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly biased transmission of ρ(-) mitochondrial DNA that occurs in hypersuppressive matings between ρ(-) and ρ(+) cells of the yeast Saccharomyces cerevisiae is thought to be a consequence of the replication advantage of the ρ(-) mtDNA. A nuclear gene, MGT1, that is required for this displacement of ρ(+) mtDNA from zygotic clones has been identified through mutation. When one haploid parent carries the mgt1 allele, transmission of ρ(-) mtDNA is substantially reduced. When both haploid parents carry the mgt1 allele, ρ(-) mtDNA is essentially eliminated from the zygotic progeny. Thus in the absence of the MGT1 gene there is a switch in the transmission bias; ρ(+) mtDNA rather than the hypersuppressive ρ(-) mtDNA is inherited by most zygotic clones. In contrast to its semi-dominant behavior in haploid matings, mgt1 behaves as a recessive allele in diploid matings since the ρ(+) genome in MGT1/mgt1 diploids is efficiently displaced when mated with a MGT1/mgt1 hypersuppressive ρ(-) diploid strain. We find that ρ(+) genomes can be comaintained along with hypersuppressive ρ(-) mtDNA for extended periods in clonal lines derived from MGT1 X mgt1 matings. However, as expected from the recessive nature of the mgt1 mutation, these ρ(+) genomes are eventually eliminated. Our work indicates that MGT1 plays a crucial role in the competition for inheritance between hypersuppressive ρ(-) mtDNAs and the ρ(+) mitochondrial genome. The MGT1 gene product may be a component of a mtDNA replication system that acts preferentially at the rep sequences found in hypersuppressive mtDNAs.  相似文献   

2.
Mechanism of Mitochondrial Mutation in Yeast   总被引:2,自引:0,他引:2  
THE yeast Saccharomyces cerevisiae can mutate to the respiratory-incompetent petite colony form. The mutation is probably caused by damage to, or loss of, the yeast's mitochondrial DNA, for petite mutants often lack mitochondrial DNA, possess it in abnormal amounts or with abnormal buoyant density1. Some of the agents, such as acrifiavine or ethidium bromide, which induce the petite mutation interfere with mitochondrial DNA synthesis2,3 whereas ethidium bromide also causes or permits degradation of Saccharomyces cerevisiae mitochondrial DNA2,3. We have observed that nalidixate (50 µg/ml.), an inhibitor of DNA synthesis, can prevent or delay petite mutation induced by ethidium bromide4. A similar effect has been observed by Hollenberg and Borst using a higher nalidixate concentration5. We have investigated the mechanism of this effect. A diploid prototrophic strain of Saccharomyces cerevisiae (NCYC 239) was used throughout.  相似文献   

3.
犬科的线粒体细胞色素b DNA序列及其分子系统学研究   总被引:13,自引:0,他引:13  
通过对犬科的赤狐、蓝狐、貉和狼4种的线粒体细胞色素b约372bpDNA片段序列分析,结合GenBank中狗、西门豺和非洲野犬3种的该区段DNA序列的比较,共发现113个核苷酸位点存在变异(约30%)。NJ法构建的分子系统树显示,非洲野犬最先从犬科动物中分化出来;犬属的我狼、狗和西门豺等3种为系统树上独立的一支,且其分歧的时间较赤狐、蓝狐和貉早;赤狐和蓝狐具有较近的亲缘关系。上述结果与形态的观点基本  相似文献   

4.
5.
On the basis of comparison of the cytochrome b gene nucleotide sequences from genetic databases, the possible phylogenetic relationships of mitochondrial DNA (mtDNA) among all major lineages of Salmoninae (Brachymystax, Parahucho, Salvelinus, Salmo, Parasalmo, and Oncorhynchus) were examined. Three different phylogenetic methods (UPGMA, NJ, and ML) yielded phylogenetic trees of essentially the same topology: (((Brachymystax, Parahucho), Salvelinus, Salmo), (Parasalmo, Oncorhynchus)). The results obtained using the maximum parsimony method were less clear. Apparently, the divergence of the main salmonid lineages occurred during a relatively short time period; hence, the number of synapomorphs marking the order of their divergence was extremely low. This may account for the relative failure to use the maximum parsimony method of phylogenetic reconstruction. The problem of concordance of mtDNA and species phylogenetic schemes is discussed. Their discrepancy in salmonids may be caused by interspecific introgressive hybridization.  相似文献   

6.
P. Haffter  T. D. Fox 《Genetics》1992,131(2):255-260
The fission yeast Schizosaccharomyces pombe has never been found to give rise to viable cells totally lacking mitochondrial DNA (rho(o)). This paper describes the isolation of rho(o) strains of S. pombe by very long term incubation of cells in liquid medium containing glucose, potassium acetate and ethidium bromide. Once isolated, the rho(o) strains did not require potassium acetate or any other novel growth factors. These nonrespiring strains contained no mitochondrial DNA (mtDNA) detectable either by gel-blot hybridization using as probe a clone containing the entire S. pombe mtDNA, or by 1',6-diamidino-2-phenylindole staining of whole cells. Induction of rho(o) derivatives of standard laboratory strains was not reproducible from culture to culture. The cause of this irreproducibility appears to be that growth of the rho(o) strains of S. pombe depended on nuclear mutations that occurred in some, but not all, of the initial cultures. Two independent rho(o) isolates contained mutations in unlinked genes, termed ptp1-1 and ptp2-1. These mutations allowed reproducible ethidium bromide induction of viable rho(o) strains. No other phenotypes were associated with ptp mutations in rho+ strains.  相似文献   

7.
Saccharomyces cerevisiae contains three NADH/NAD(+) kinases, one of which is localized in mitochondria and phosphorylates NADH in preference to NAD(+). Strand et al. reported that a yeast mutation in POS5, which encodes the mitochondrial NADH kinase, is a mutator, specific for mitochondrial genes (Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., and Copeland, W. C. (2003) Eukaryot. Cell 2, 809-820). Because of the involvement of NADPH in deoxyribonucleotide biosynthesis, we asked whether mitochondria in a pos5 deletion mutant contain abnormal deoxyribonucleoside triphosphate (dNTP) pools. We found the pools of the four dNTPs to be more than doubled in mutant mitochondrial extracts relative to wild-type mitochondrial extracts. This might partly explain the mitochondrial mutator phenotype. However, the loss of antioxidant protection is also likely to be significant. To this end, we measured pyridine nucleotide pools in mutant and wild-type mitochondrial extracts and found NADPH levels to be diminished by ~4-fold in Δpos5 mitochondrial extracts, with NADP(+) diminished to a lesser degree. Our data suggest that both dNTP abnormalities and lack of antioxidant protection contribute to elevated mitochondrial gene mutagenesis in cells lacking the mitochondrial NADH kinase. The data also confirm previous reports of the specific function of Pos5p in mitochondrial NADP(+) and NADPH biosynthesis.  相似文献   

8.
The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.  相似文献   

9.
新疆3种雅罗鱼线粒体DNA细胞色素b序列的差异与系统进化   总被引:3,自引:1,他引:3  
利用鲤科鱼类线粒体DNA细胞色素b通用引物对分布在新疆的准噶尔雅罗鱼(Leuciscusmerzbacheri)、贝加尔雅罗鱼(L .baicalensis)和高体雅罗鱼(L .idus) 3个鱼种共1 5尾个体的线粒体DNACytb部分核苷酸序列进行了测定,获得1 5条长度为41 3bp的同源基因序列。同源基因序列分析显示,在3种雅罗鱼1 5条mtDNACytb基因片段中,A、T、C、G碱基的平均含量分别是:2 7 4%、2 6 7%、1 7 2 %、2 8 7% ,其中A T含量(5 4 1 % )高于G C含量(4 5 9% ) ;共检测到5 2个突变位点;转换比颠换发生频率高,转换颠换比值(R)是3 5。mtDNACytb的进化速率在3种雅罗鱼间表现出不一致性,贝加尔与高体雅罗鱼、贝加尔与准噶尔雅罗鱼种间遗传距离分别是0 1 2 5 1和0 1 2 61 ,保守性较低;高体与准噶尔雅罗鱼种间的遗传距离是0 0 0 0 7,高度保守。mtDNACytb分子系统树显示,在3种雅罗鱼中贝加尔雅罗鱼独立成一枝,高体雅罗鱼和准噶尔雅罗鱼聚成一类。提示了,在mtDNACytb分子水平上,高体雅罗鱼和准噶尔雅罗鱼的亲缘关系十分相近,贝加尔雅罗鱼与准噶尔雅罗鱼的亲缘关系相距较远。我们对准噶尔、贝加尔和高体雅罗鱼mtDNACytb方面的研究与陈星玉对其骨骼类型的研究结果相吻合。  相似文献   

10.
Nucleotide sequences of two (405- and 1050-bp) regions of mitochondrial DNA (mtDNA) cytochrome c gene were established in chars of the genus Salvelinus from Russian Far East and Siberia. Based on the divergence and phylogenetic analysis of nucleotide sequences of the mtDNA cytochrome b gene, S. laecomaenis was shown to carry the most ancient mitochondrial lineage, which is close to the ancestral one. The archaic mtDNA of S. levanidovi occupied an isolated position on the phylogenetic trees. The mtDNA lineage of the southern S. malma was close to the S. alpinus–S. malma malmacomplex group. Within the S. alpinus–S. m. malma complex, three groups of mtDNA types having particular geographic distributions were distinguished. The Kolyma–Chukotka group includes lake S. taranetzi, S. boganidae, andS. elgyticus from Chukotka, lake chars from Kolyma. The Okhotsk group is represented by northernS. malma, lake chars from northern Sea of Okhotsk, and anadromous S. taranetzi. The Siberian group is close to the Okhotsk one and consists of Taimyr and Baikal region chars as well as Arctic char from Finland. The divergence of char mitochondrial lineages was dated to the Pliocene–Pleistocene.  相似文献   

11.
12.
A cytochrome b complex and cytochrome oxidase have been purified 14- and 20-fold respectively from yeast submitochondrial particles by a simple procedure involving their spontaneous precipitation from a deoxycholate extract. The recovery of both proteins was almost quantitative. The specific heme contents were 11 and 8 nmoles/mg protein for the cytochrome b complex and cytochrome oxidase respectively and both were spectrally pure. Sodium dodecyl sulfate gel electrophoresis resolved the cytochrome b complex into seven distinct subunits with molecular weights 42, 000, 33, 000, 27, 500, 23, 000, 15, 500, 13, 000 and 10, 500. Cytochrome oxidase contained five bands with molecular weights 42, 000, 26, 500, 21, 000, 14, 000 and 10, 500. Much of the cytochrome b complex (and all of the cytochrome oxidase) could be resolubilized in aqueous buffer following precipitation from the deoxycholate extract. The fraction of the cytochrome b preparation which remained insoluble appeared identical to the soluble protein in terms of polypeptide composition but contained less phospholipid and bound detergent, suggesting that insolubility may result from interaction between hydrophobic regions otherwise occupied by amphiphiles. The soluble cytochrome b complex migrated as a single species upon analytical ultracentrifugation and column chromatography, and during electrophoresis on polyacrylamide gels. Triton X-100, urea, or bile salts, failed to dissociate the complex. These findings suggest that the subunits are tightly associated in situ.  相似文献   

13.
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.  相似文献   

14.
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.  相似文献   

15.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho+ mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho0 petites) and/or lead to truncated forms (rho) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho+ genome depends on a centromere-like structure dispensable for the maintenance of rho mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

16.
The cause of the high variability of human mitochondrial DNA (mtDNA) remains largely unknown. Three mechanisms of mutagenesis that might account for the generation of nucleotide substitutions in mtDNA have been analyzed: deamination of DNA nitrous bases caused by deamination agents, tautomeric proton migration in nitrous bases, and the hydrolysis of the glycoside bond between the nitrous base and carbohydrate residue in nucleotides against the background of the free-radical damage of DNA polymerase γ. Quantum chemical calculations demonstrated that the hydrolysis of the N-glycoside bond is the most probable mechanism; it is especially prominent in the H strand, which remains free during mtDNA replication for a relatively long time. It has also been found that hydrolytic deamination of adenine in single-stranded regions of the H strand is a possible cause of the high frequency of T → C transitions in the mutation spectra of the L-chain of the major mtDNA noncoding region.  相似文献   

17.
18.
In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance.  相似文献   

19.
A full-length cytochrome b pseudogene was found in rodents; it has apparently been translocated from a mitochondrion to the nuclear genome in the subfamily Arvicolinae. The pseudogene (ψcytb) differed from its mitochondrial counterpart at 201 of 1143 sites (17.6%) and by four indels. Cumulative evidence suggests that the pseudogene has been translocated to the nucleus. Phylogenetic reconstruction indicates that the pseudogene arose before the diversification of M. arvalis/M. rossiaemeridionalis from M. oeconomus, but after the divergence of the peromyscine/sigmodontine/arvicoline clades some ∼10 MYA. Published rates of divergence between mitochondrial genes and their nuclear pseudogenes suggest that the translocation of this mitochondrial gene to the nuclear genome occurred some 6 MYA, in agreement with the phylogenetic evidence. Received: 16 January 1998 / Accepted: 18 July 1998  相似文献   

20.
从细胞色素b基因序列变异分析中国鲇形目鱼类的系统发育   总被引:18,自引:0,他引:18  
采用PCR技术获得中国鲇形目鱼类11科24属27个代表种类细胞色素b基因1138bp全序列,比较分析了来自北美洲、非洲的部分鲇形目鱼类同一基因序列,并选取脂鲤目、鲤形目和鲱形目鱼类作外类群,采用Bayesian方法和最大简约法(MP)构建分子系统树。结果表明:(1)鲇形目鱼类细胞色素b基因序列中,与脂鲤目、鲤形目以及鲱形目鱼类相比存在3bp的缺失;(2)鲇形目鱼类各科代表种类形成一单系群;(3)两种建树方法均支持铫科、粒鲇科和钝头鮠科形成一单系群;而胡子鲇科、刀鲇科、海鲇科、鮰科、长臀鮠科、鲢科、鲇科、棘脂鲿科、鲿科形成一大的单系群;但鳗鲇科的系统位置两种建树方法没有取得一致结果;而其中长臀鲍科与北美的鮰科形成姐妹群,胡子鲇、鮰科、鲇科、鲿科和鮡科是较明显的单系群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号