首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Mutations linked to early onset, familial forms of Alzheimer''s disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1–42/Aβ1–40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1–42 production, decreasing Aβ1–40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q.

Methodology/Principal Findings

We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1–40, Aβ1–42 and APP intracellular domain productions in vitro.

Conclusion/Significance

Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1–42/Aβ1–40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer''s disease.  相似文献   

2.
Proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases generates β-amyloid (Aβ) peptides, which accumulate in the brains of individuals affected by Alzheimer disease. Detergent-resistant membrane microdomains (DRM) rich in cholesterol and sphingolipid, termed lipid rafts, have been implicated in Aβ production. Previously, we and others reported that the four integral subunits of the γ-secretase associate with DRM. In this study we investigated the mechanisms underlying DRM association of γ-secretase subunits. We report that in cultured cells and in brain the γ-secretase subunits nicastrin and APH-1 undergo S-palmitoylation, the post-translational covalent attachment of the long chain fatty acid palmitate common in lipid raft-associated proteins. By mutagenesis we show that nicastrin is S-palmitoylated at Cys689, and APH-1 is S-palmitoylated at Cys182 and Cys245. S-Palmitoylation-defective nicastrin and APH-1 form stable γ-secretase complexes when expressed in knock-out fibroblasts lacking wild type subunits, suggesting that S-palmitoylation is not essential for γ-secretase assembly. Nevertheless, fractionation studies show that S-palmitoylation contributes to DRM association of nicastrin and APH-1. Moreover, pulse-chase analyses reveal that S-palmitoylation is important for nascent polypeptide stability of both proteins. Co-expression of S-palmitoylation-deficient nicastrin and APH-1 in cultured cells neither affects Aβ40, Aβ42, and AICD production, nor intramembrane processing of Notch and N-cadherin. Our findings suggest that S-palmitoylation plays a role in stability and raft localization of nicastrin and APH-1, but does not directly modulate γ-secretase processing of APP and other substrates.Alzheimer disease is the most common among neurodegenerative diseases that cause dementia. This debilitating disorder is pathologically characterized by the cerebral deposition of 39–42 amino acid peptides termed Aβ, which are generated by proteolytic processing of amyloid precursor protein (APP)2 by β- and γ-secretases (1, 2). The β-site APP cleavage enzyme 1 cleaves full-length APP within its luminal domain to generate a secreted ectodomain leaving behind a C-terminal fragment (β-CTF). γ-Secretase cleaves β-CTF within the transmembrane domain to release Aβ and APP intracellular C-terminal domain (AICD). γ-Secretase is a multiprotein complex, comprising at least four subunits: presenilins (PS1 and PS2), nicastrin, APH-1, and PEN-2 for its activity (3). PS1 is synthesized as a 42–43-kDa polypeptide and undergoes highly regulated endoproteolytic processing within the large cytoplasmic loop domain connecting putative transmembrane segments 6 and 7 to generate stable N-terminal (NTF) and C-terminal fragments (CTF) by an uncharacterized proteolytic activity (4). This endoproteolytic event has been identified as the activation step in the process of PS1 maturation as it assembles with other γ-secretase subunits (3). Nicastrin is a heavily glycosylated type I membrane protein with a large ectodomain that has been proposed to function in substrate recognition and binding (5), but this putative function has not been confirmed by others (6). APH-1 is a seven-transmembrane protein encoded by two human or three rodent genes that are alternatively spliced (7). Although PS1 (or PS2), nicastrin, APH-1, and PEN-2 are sufficient for γ-secretase processing of APP, a type I membrane protein, termed p23 (also referred toTMP21), was recently identified as a γ-secretase component that modulates γ-secretase activity and regulates secretory trafficking of APP (8, 9).A growing number of type I integral membrane proteins has been identified as γ-secretase substrates within the last few years, including Notch1 homologues, Notch ligands, Delta and Jagged, cell adhesion receptors N- and E-cadherins, low density lipoprotein receptor-related protein, ErbB-4, netrin receptor DCC, and others (10). Mounting evidence suggests that APP processing occurs within cholesterol- and sphingolipid-enriched lipid rafts, which are biochemically defined as detergentresistant membrane microdomains (DRM) (11, 12). Previously we reported that each of the γ-secretase subunits localizes in lipid rafts in post-Golgi and endosome membranes enriched in syntaxin 6 (13). Moreover, loss of γ-secretase activity by gene deletion or exposure to γ-secretase inhibitors results in the accumulation of APP CTFs in lipid rafts indicating that cleavage of APP CTFs likely occurs in raft microdomains (14). In contrast, CTFs derived from Notch1, Jagged2, N-cadherin, and DCC are processed by γ-secretase in non-raft membranes (14). The mechanisms underlying association of γ-secretase subunits with lipid rafts need further clarification to elucidate spatial segregation of amyloidogenic processing of APP in membrane microdomains.Post-translational S-palmitoylation is increasingly recognized as a potential mechanism for regulating raft association, stability, intracellular trafficking, and function of several cytosolic and transmembrane proteins (1517). S-palmitoylation refers to the addition of 16-carbon palmitoyl moiety to certain cysteine residues through thioester linkage. Cysteines close to transmembrane domains or membrane-associated domains in non-integral membrane proteins are preferred S-palmitoylation sites, although no conserved motif has been identified (18). Palmitoylation modifies numerous neuronal proteins, including postsynaptic density protein PSD-95 (19), a-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid receptors (20), nicotinic α7 receptors (21), neuronal t-SNAREs SNAP-25, synaptobrevin 2 and synaptogagmin (22, 23), neuronal growth-associated protein GAP-43 (24), protein kinase CLICK-III (CL3)/CaMKIγ (25), β-secretase (26), and Huntingtin (27). Although palmitoylation can occur in vitro without the involvement of an enzyme, a family of palmitoyltransferases that specifically catalyze S-palmitoylation has been identified (28, 29).In this study, we have identified S-palmitoylation of γ-secretase subunits nicastrin and APH-1, and characterized its role on DRM association, protein stability, and γ-secretase enzyme activities. We show that nicastrin is S-palmitoylated at Cys689, and APH-1 at Cys182 and Cys245. Mutagenesis of palmitoylation sites results in increased degradation of nascent nicastrin and APH-1 polypeptides and reduced association with DRM. Nevertheless, in cultured cells overexpression of S-palmitoylation-deficient nicastrin and APH-1 does not modulate γ-secretase processing of APP or other substrates.  相似文献   

3.
Proteolytic processing of amyloid precursor protein generates beta-amyloid (Abeta) peptides that are deposited in senile plaques in brains of aged individuals and patients with Alzheimer's disease. Presenilins (PS1 and PS2) facilitate the final step in Abeta production, the intramembranous gamma-secretase cleavage of amyloid precursor protein. Biochemical and pharmacological evidence support a catalytic or accessory role for PS1 in gamma-secretase cleavage, as well as a regulatory role in select membrane protein trafficking. In this report, we demonstrate that PS1 is required for maturation and cell surface accumulation of nicastrin, an integral component of the multimeric gamma-secretase complex. Using kinetic labeling studies we show that in PS1(-/-)/PS2(-/-) cells nicastrin fails to reach the medial Golgi compartment, and as a consequence, is incompletely glycosylated. Stable expression of human PS1 restores these deficiencies in PS1(-/-) fibroblasts. Moreover, membrane fractionation studies show co-localization of PS1 fragments with mature nicastrin. These results indicate a novel chaperone-type role for PS1 and PS2 in facilitating nicastrin maturation and transport in the early biosynthetic compartments. Our findings are consistent with PS1 influencing gamma-secretase processing at multiple steps, including maturation and intracellular trafficking of substrates and component(s) of the gamma-secretase complex.  相似文献   

4.
5.
Excessive accumulation of β-amyloid peptides in the brain is a major cause for the pathogenesis of Alzheimer disease. β-Amyloid is derived from β-amyloid precursor protein (APP) through sequential cleavages by β- and γ-secretases, whose enzymatic activities are tightly controlled by subcellular localization. Delineation of how intracellular trafficking of these secretases and APP is regulated is important for understanding Alzheimer disease pathogenesis. Although APP trafficking is regulated by multiple factors including presenilin 1 (PS1), a major component of the γ-secretase complex, and phospholipase D1 (PLD1), a phospholipid-modifying enzyme, regulation of intracellular trafficking of PS1/γ-secretase and β-secretase is less clear. Here we demonstrate that APP can reciprocally regulate PS1 trafficking; APP deficiency results in faster transport of PS1 from the trans-Golgi network to the cell surface and increased steady state levels of PS1 at the cell surface, which can be reversed by restoring APP levels. Restoration of APP in APP-deficient cells also reduces steady state levels of other γ-secretase components (nicastrin, APH-1, and PEN-2) and the cleavage of Notch by PS1/γ-secretase that is more highly correlated with cell surface levels of PS1 than with APP overexpression levels, supporting the notion that Notch is mainly cleaved at the cell surface. In contrast, intracellular trafficking of β-secretase (BACE1) is not regulated by APP. Moreover, we find that PLD1 also regulates PS1 trafficking and that PLD1 overexpression promotes cell surface accumulation of PS1 in an APP-independent manner. Our results clearly elucidate a physiological function of APP in regulating protein trafficking and suggest that intracellular trafficking of PS1/γ-secretase is regulated by multiple factors, including APP and PLD1.An important pathological hallmark of Alzheimer disease (AD)4 is the formation of senile plaques in the brains of patients. The major components of those plaques are β-amyloid peptides (Aβ), whose accumulation triggers a cascade of neurodegenerative steps ending in formation of senile plaques and intraneuronal fibrillary tangles with subsequent neuronal loss in susceptible brain regions (1, 2). Aβ is proteolytically derived from the β-amyloid precursor protein (APP) through sequential cleavages by β-secretase (BACE1), a novel membrane-bound aspartyl protease (3, 4), and by γ-secretase, a high molecular weight complex consisting of at least four components: presenilin (PS), nicastrin (NCT), anterior pharynx-defective-1 (APH-1), and presenilin enhancer-2 (PEN-2) (5, 6). APP is a type I transmembrane protein belonging to a protein family that includes APP-like protein 1 (APLP1) and 2 (APLP2) in mammals (7, 8). Full-length APP is synthesized in the endoplasmic reticulum (ER) and transported through the Golgi apparatus. Most secreted Aβ peptides are generated within the trans-Golgi network (TGN), also the major site of steady state APP in neurons (911). APP can be transported to the cell surface in TGN-derived secretory vesicles if not proteolyzed to Aβ or an intermediate metabolite. At the cell surface APP is either cleaved by α-secretase to produce soluble sAPPα (12) or reinternalized for endosomal/lysosomal degradation (13, 14). Aβ may also be generated in endosomal/lysosomal compartments (15, 16). In contrast to neurotoxic Aβ peptides, sAPPα possesses neuroprotective potential (17, 18). Thus, the subcellular distribution of APP and proteases that process it directly affect the ratio of sAPPα to Aβ, making delineation of the mechanisms responsible for regulating trafficking of all of these proteins relevant to AD pathogenesis.Presenilin (PS) is a critical component of the γ-secretase. Of the two mammalian PS gene homologues, PS1 and PS2, PS1 encodes the major form (PS1) in active γ-secretase (19, 20). Nascent PSs undergo endoproteolytic cleavage to generate an amino-terminal fragment (NTF) and a carboxyl-terminal fragment (CTF) to form a functional PS heterodimer (21). Based on observations that PSs possess two highly conserved aspartate residues indispensable for γ-secretase activity and that specific transition state analogue γ-secretase inhibitors bind to PS1 NTF/CTF heterodimers (5, 22), PSs are believed to be the catalytic component of the γ-secretase complex. PS assembles with three other components, NCT, APH-1, and PEN-2, to form the functional γ-secretase (5, 6). Strong evidence suggests that PS1/γ-secretase resides principally in the ER, early Golgi, TGN, endocytic and intermediate compartments, most of which (except the TGN) are not major subcellular sites for APP (23, 24). In addition to generating Aβ and cleaving APP to release the APP intracellular domain, PS1/γ-secretase cleaves other substrates such as Notch (25), cadherin (26), ErbB4 (27), and CD44 (28), releasing their respective intracellular domains. Interestingly, PS1/γ-secretase cleavage of different substrates seems to occur at different subcellular compartments; APP is mainly cleaved at the TGN and early endosome domains, whereas Notch is predominantly cleaved at the cell surface (9, 11, 29). Thus, perturbing intracellular trafficking of PS1/γ-secretase may alter interactions between PS1/γ-secretase and APP, contributing to either abnormal Aβ generation and AD pathogenesis or decreased access of PS1/γ-secretase to APP such that Aβ production is reduced. However, mechanisms regulating PS1/γ-secretase trafficking warrant further investigation.In addition to participating in γ-secretase activity, PS1 regulates intracellular trafficking of several membrane proteins, including other γ-secretase components (nicastrin, APH-1, and PEN-2) and the substrate APP (reviewed in Ref. 30). Intracellular APP trafficking is highly regulated and requires other factors such as mint family members and SorLA (2). Moreover, we recently found that phospholipase D1 (PLD1), a phospholipid-modifying enzyme that regulates membrane trafficking events, can interact with PS1, and can regulate budding of APP-containing vesicles from the TGN and delivery of APP to the cell surface (31, 32). Interestingly, Kamal et al. (33) identified an axonal membrane compartment that contains APP, BACE1, and PS1 and showed that fast anterograde axonal transport of this compartment is mediated by APP and kinesin-I, implying a traffic-regulating role for APP. Increased APP expression is also shown to decrease retrograde axonal transport of nerve growth factor (34). However, whether APP indeed regulates intracellular trafficking of proteins including BACE1 and PS1/γ-secretase requires further validation. In the present study we demonstrate that intracellular trafficking of PS1, as well as that of other γ-secretase components, but not BACE1, is regulated by APP. APP deficiency promotes cell surface delivery of PS1/γ-secretase complex and facilitates PS1/γ-secretase-mediated Notch cleavage. In addition, we find that PLD1 also regulates intracellular trafficking of PS1 through a different mechanism and more potently than APP.  相似文献   

6.
The presenilins and nicastrin form high molecular mass, multimeric protein complexes involved in the intramembranous proteolysis of several proteins. Post-translational glycosylation and trafficking of nicastrin is necessary for the activity of these complexes. We report here that although there are differences in the post-translational processing of nicastrin in neurons and glia, both of the presenilins are required for the physiological post-translational modification and for the correct subcellular distribution of nicastrin. Absence of presenilin 1 (PS1) is associated with dramatic reductions in the level of mature glycosylated nicastrin and with redistribution of nicastrin away from the cell surface. In contrast, absence of presenilin 2 (PS2) is associated with only modest reductions in the levels of immature nicastrin. It is notable that these differential effects parallel the differential effects of null mutations in PS1 and PS2 on APP and Notch processing. Our data therefore suggest that the differential interactions of PS1 and PS2 with nicastrin reflect different functions for the PS1 and PS2 complexes.  相似文献   

7.
The γ-secretase protein complex executes the intramembrane proteolysis of amyloid precursor protein (APP), which releases Alzheimer disease β-amyloid peptide. In addition to APP, γ-secretase also cleaves several other type I membrane protein substrates including Notch1 and N-cadherin. γ-Secretase is made of four integral transmembrane protein subunits: presenilin (PS), nicastrin, APH1, and PEN2. Multiple lines of evidence indicate that a heteromer of PS-derived N- and C-terminal fragments functions as the catalytic subunit of γ-secretase. Only limited information is available on the domains within each subunit involved in the recognition and recruitment of diverse substrates and the transfer of substrates to the catalytic site. Here, we performed mutagenesis of two domains of PS1, namely the first luminal loop domain (LL1) and the second transmembrane domain (TM2), and analyzed PS1 endoproteolysis as well as the catalytic activities of PS1 toward APP, Notch, and N-cadherin. Our results show that distinct residues within LL1 and TM2 domains as well as the length of the LL1 domain are critical for PS1 endoproteolysis, but not for PS1 complex formation with nicastrin, APH1, and PEN2. Furthermore, our experimental PS1 mutants formed γ-secretase complexes with distinct catalytic properties toward the three substrates examined in this study; however, the mutations did not affect PS1 interaction with the substrates. We conclude that the N-terminal LL1 and TM2 domains are critical for PS1 endoproteolysis and the coordination between the putative substrate-docking site and the catalytic core of the γ-secretase.  相似文献   

8.
In Alzheimer’s disease (AD), the neuropathologic hallmarks of β-amyloid deposition and neurofibrillary degeneration are associated with early and progressive pathology of the endosomal–lysosomal system. Abnormalities of autophagy, a major pathway to lysosomes for protein and organelle turnover, include marked accumulations of autophagy-related vesicular compartments (autophagic vacuoles or AVs) in affected neurons. Here, we investigated the possibility that AVs contain the proteases and substrates necessary to cleave the amyloid precursor protein (APP) to Aβ peptide that forms β-amyloid, a key pathogenic factor in AD. AVs were highly purified using a well-established metrizamide gradient procedure from livers of transgenic YAC mice overexpressing wild-type human APP. By Western blot analysis, AVs contained APP, βCTF - the β-cleaved carboxyl-terminal domain of APP, and BACE, the protease-mediating β-cleavage of APP. β-Secretase activity measured against a fluorogenic peptide was significantly enriched in the AV fraction relative to whole-liver lysate. Compared to other recovered subcellular fractions, AVs exhibited the highest specific activity of γ-secretase based on a fluorogenic assay and inhibition by a specific inhibitor of γ-secretase, DAPT. AVs were also the most enriched subcellular fraction in levels of the γ-secretase components presenilin and nicastrin. Immunoelectron microscopy demonstrated selective immunogold labeling of AVs with antibodies specific for the carboxyl termini of human Aβ40 and Aβ42. These data indicate that AVs are a previously unrecognized and potentially highly active compartment for Aβ generation and suggest that the abnormal accumulation of AVs in affected neurons of the AD brain contributes to β-amyloid deposition.  相似文献   

9.
Nicastrin was the first binding partner of presenilin (PS) shown to be a critical component of the presenilin/gamma-secretase complex essential in development and differentiation, and in generation of Alzheimer's disease Abeta amyloid peptide. To investigate the function of this glycoprotein, we compared nicastrin and presenilin protein expression in various mouse tissues. Western blot analysis of PS1, PS2 and nicastrin indicates their expression levels are not coordinated. In adult mouse, nicastrin is highly expressed in muscle membranes, whereas presenilin levels are very low. By Blue Native electrophoresis, a PS1 complex of 400 kDa was detected in lung, brain, thymus and heart; nicastrin was also detected as a 400-kDa complex in brain but in muscle it was detected with a complex mobility of 240 and 290 kDa, suggesting association with alternate protein complexes. Immunocytochemistry confirms strong intracellular expression of nicastrin in skeletal muscle and blood vessel smooth muscle. These findings suggest a function for nicastrin in muscle other than participation in the gamma-secretase complex.  相似文献   

10.
γ-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2, which mediates intramembrane proteolysis of a range of type I transmembrane proteins. We previously analyzed the functional roles of the N-terminal transmembrane domains (TMDs) 1–6 of PS1 in the assembly and proteolytic activity of the γ-secretase using a series of TMD-swap PS1 mutants. Here we applied the TMD-swap method to all the TMDs of PS1 for the structure-function analysis of the proteolytic mechanism of γ-secretase. We found that TMD2- or -6-swapped mutant PS1 failed to bind the helical peptide-based, substrate-mimic γ-secretase inhibitor. Cross-linking experiments revealed that both TMD2 and TMD6 of PS1 locate in proximity to the TMD9, the latter being implicated in the initial substrate binding. Taken together, our data suggest that TMD2 and the luminal side of TMD6 are involved in the formation of the initial substrate-binding site of the γ-secretase complex.  相似文献   

11.
Complexes involved in the γ/ϵ-secretase-regulated intramembranous proteolysis of substrates such as the amyloid-β precursor protein are composed primarily of presenilin (PS1 or PS2), nicastrin, anterior pharynx defective-1 (APH1), and PEN2. The presenilin aspartyl residues form the catalytic site, and similar potentially functional polar transmembrane residues in APH1 have been identified. Substitution of charged (E84A, R87A) or polar (Q83A) residues in TM3 had no effect on complex assembly or activity. In contrast, changes to either of two highly conserved histidines (H171A, H197A) located in TM5 and TM6 negatively affected PS1 cleavage and altered binding to other secretase components, resulting in decreased amyloid generating activity. Charge replacement with His-to-Lys substitutions rescued nicastrin maturation and PS1 endoproteolysis leading to assembly of the formation of structurally normal but proteolytically inactive γ-secretase complexes. Substitution with a negatively charged side chain (His-to-Asp) or altering the structural location of the histidines also disrupted γ-secretase binding and abolished functionality of APH1. These results suggest that the conserved transmembrane histidine residues contribute to APH1 function and can affect presenilin catalytic activity.The anterior pharynx defective-1 (APH1)5 protein is an essential component of presenilin-dependent complexes required for the γ/ϵ-secretase activity (1). The multicomponent γ-secretase is responsible for the intramembrane proteolysis of a variety of substrates including the amyloid-β precursor protein (APP) and Notch receptor. Notch signaling is involved in a variety of important cell fate decisions during embryogenesis and adulthood (2). The γ/ϵ-secretase cleavage of APP protein is related to the pathogenesis of Alzheimer disease by releasing the 4-kDa amyloid β-peptide (Aβ) which accumulates as senile plaques in patients with Alzheimer disease (3, 4).The γ-complexes are composed of multispanning transmembrane proteins that include APH1 (5, 6), presenilin (PS1 or PS2) (710), PEN2 (5), and the type 1 transmembrane nicastrin (NCT) (11). All four components are essential for proteolytic activity, and loss of any single component destabilizes the complex, resulting in the loss of substrate cleavage. Conversely, co-expression of all four components increases γ-secretase activity (1214). During the maturation of the complexes, presenilins undergo an endoproteolytic cleavage to generate amino- and carboxyl-terminal fragments which remain associated as heterodimers in the active high molecular weight complexes (1518). Although the exact function of presenilins has been debated (19, 20), it has been proposed that the presenilins are aspartyl proteases with two transmembrane residues constituting the catalytic subunit (21). Analogous aspartyl catalytic dyads are found in the signal peptide peptidases (21, 22). Contributions from the other components are under investigation, and it has been shown, for example, that the large ectodomain of NCT plays a key role in substrate recognition (23, 24). It has also been shown that other proteins can regulate activity such as TMP21, a member of p24 cargo protein, which binds to the presenilin complexes and selectively modulates γ but not ϵ cleavage (25, 26).APH1 is a seven-transmembrane protein with a topology such that the amino terminus is oriented with the endoplasmic reticulum and the carboxyl terminus resides in the cytoplasm (6, 27). It is also expressed as different isoforms encoded by two genes in humans (APH1a on chromosome 1; APH1b on chromosome 15) or three genes in rodents (APH1a on chromosome 3; APH1b and APH1c on chromosome 9). APH1a has 55% sequence similarity with APH1b/APH1c, whereas APH1b and APH1c share 95% similarity. In addition to these different genes, APH1a is alternatively spliced to generate a short (APH1aS) and a long isoform (APH1aL). These two isoforms differ by the addition of 18 residues on the carboxyl-terminal part of APH1aL (28, 29). Deletion of APH1a in mice is embryonically lethal and is associated with developmental and patterning defects similar to those found in Notch, NCT, or PS1 null embryos (30, 31). In contrast to the essential nature of APH1a, the combined APH1b/c-deficient mice survive into adulthood (31). This suggests that APH1a is the major homologue involved in presenilin-dependent function during embryonic development. In addition, these different APH1 variants are constituents of distinct, proteolytically active presenilin-containing complexes and may, therefore, make unique contributions to γ-secretase activity (3032).Despite their importance to complex formation and function, the exact role of the APH1 isoforms in presenilin-dependent γ/ϵ-secretase activity remains under investigation. In the current study, several highly conserved polar and charged residues located within the transmembrane domains of APH1 were identified. Mutagenesis of two conserved histidine residues embedded in TM5 and TM6 (His-171 and His-197) lead to alterations in γ-secretase complex maturation and activity. The histidine residues contribute to APH1 function and are involved in stabilizing interactions with other γ-secretase components. These key histidines may also be physically localized near the presenilin active site and involved in the γ-secretase activity as shown by the decreased activity of γ-secretase complexes that are assembled with the His-mutants.  相似文献   

12.
13.
Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alcα, Alcβ, and Alcγ. The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP α-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent γ-secretase complex, thereby generating “APP p3-like” and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alcα, p3-Alcβ, and p3-Alcγ, whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor β-amyloid species Aβ42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alcα, p3-Alcβ, and p3-Alcγ were not equivalent, suggesting that one type of γ-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect γ-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.  相似文献   

14.
γ-Secretase is known to play a pivotal role in the pathogenesis of Alzheimer disease through production of amyloidogenic Aβ42 peptides. Early onset familial Alzheimer disease mutations in presenilin (PS), the catalytic core of γ-secretase, invariably increase the Aβ42:Aβ40 ratio. However, the mechanism by which these mutations affect γ-secretase complex formation and cleavage specificity is poorly understood. We show that our in vitro assay system recapitulates the effect of PS1 mutations on the Aβ42:Aβ40 ratio observed in cell and animal models. We have developed a series of small molecule affinity probes that allow us to characterize active γ-secretase complexes. Furthermore we reveal that the equilibrium of PS1- and PS2-containing active complexes is dynamic and altered by overexpression of Pen2 or PS1 mutants and that formation of PS2 complexes is positively correlated with increased Aβ42:Aβ40 ratios. These data suggest that perturbations to γ-secretase complex equilibrium can have a profound effect on enzyme activity and that increased PS2 complexes along with mutated PS1 complexes contribute to an increased Aβ42:Aβ40 ratio.β-Amyloid (Aβ)5 peptides are believed to play a causative role in Alzheimer disease (AD). Aβ peptides are generated from the processing of the amyloid precursor protein (APP) by two proteases, β-secretase and γ-secretase. Although γ-secretase generates heterogenous Aβ peptides ranging from 37 to 46 amino acids in length, significant work has focused mainly on the Aβ40 and Aβ42 peptides that are the major constituents of amyloid plaques. γ-Secretase is a multisubunit membrane aspartyl protease comprised of at least four known subunits: presenilin (PS), nicastrin (Nct), anterior pharynx-defective (Aph), and presenilin enhancer 2 (Pen2). Presenilin is thought to contain the catalytic core of the complex (14), whereas Aph and Nct play critical roles in the assembly, trafficking, and stability of γ-secretase as well as substrate recognition (5, 6). Lastly Pen2 facilitates the endoproteolysis of PS into its N-terminal (NTF) and C-terminal (CTF) fragments thereby yielding a catalytically competent enzyme (5, 710). All four proteins (PS, Nct, Aph1, and Pen2) are obligatory for γ-secretase activity in cell and animal models (11, 12). There are two homologs of PS, PS1 and PS2, and three isoforms of Aph1, Aph1aS, Aph1aL, and Aph1b. At least six active γ-secretase complexes have been reported (two presenilins × three Aph1s) (13, 14). The sum of apparent molecular masses of the four proteins (PS1-NTF/CTF ≈ 53 kDa, Nct ≈ 120 kDa, Aph1 ≈ 30 kDa, and Pen2 ≈ 10kDa) is ∼200 kDa. However, active γ-secretase complexes of varying sizes, ranging from 250 to 2000 kDa, have been reported (1519). Recently a study suggested that the γ-secretase complex contains only one of each subunit (20). Collectively these studies suggest that a four-protein complex around 200–250 kDa may be the minimal functional γ-secretase unit with additional cofactors and/or varying stoichiometry of subunits existing in the high molecular weight γ-secretase complexes. CD147 and TMP21 have been found to be associated with the γ-secretase complex (21, 22); however, their role in the regulation of γ-secretase has been controversial (23, 24).Mutations of PS1 or PS2 are associated with familial early onset AD (FAD), although it is debatable whether these familial PS mutations act as “gain or loss of function” alterations in regard to γ-secretase activity (2527). Regardless the overall outcome of these mutations is an increased ratio of Aβ42:Aβ40. Clearly these mutations differentially affect γ-secretase activity for the production of Aβ40 and Aβ42. Despite intensive studies of Aβ peptides and γ-secretase, the molecular mechanism controlling the specificity of γ-secretase activity for Aβ40 and Aβ42 production has not been resolved. It has been found that PS1 mutations affect the formation of γ-secretase complexes (28). However, the precise mechanism by which individual subunits alter the dynamics of γ-secretase complex formation and activity is largely unresolved. A better mechanistic understanding of γ-secretase activity associated with FAD mutations has been hindered by the lack of suitable assays and probes that are necessary to recapitulate the effect of these mutations seen in cell models and to characterize the active γ-secretase complex.In our present studies, we have determined the overall effect of Pen2 and PS1 expression on the dynamics of PS1- and PS2-containing complexes and their association with γ-secretase activity. Using newly developed biotinylated small molecular probes and activity assays, we revealed that expression of Pen2 or PS1 FAD mutants markedly shifts the equilibrium of PS1-containing active complexes to that of PS2-containing complexes and results in an overall increase in the Aβ42:Aβ40 ratio in both stable cell lines and animal models. Our studies indicate that perturbations to the equilibrium of active γ-secretase complexes by an individual subunit can greatly affect the activity of the enzyme. Moreover they serve as further evidence that there are multiple and distinct γ-secretase complexes that can exist within the same cells and that their equilibrium is dynamic. Additionally the affinity probes developed here will facilitate further study of the expression and composition of endogenous active γ-secretase from a variety of model systems.  相似文献   

15.
Gamma-secretase is an aspartyl protease complex that catalyzes the intramembrane cleavage of a subset of type I transmembrane proteins including the beta-amyloid precursor protein (APP) implicated in Alzheimer's disease. Presenilin (PS), nicastrin (NCT), anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2) constitute the active gamma-secretase complex. PEN-2, the smallest subunit, is required for triggering PS endoproteolysis. Stabilization of the resultant N- and C-terminal fragments, which carry the catalytically active site aspartates, but not endoproteolysis itself, requires the C-terminal domain of PEN-2. To functionally dissect the C-terminal domain we created C-terminal deletion mutants and mutagenized several evolutionary highly conserved residues. The PEN-2 mutants were then probed for functional complementation of a PEN-2 knockdown, which displays deficient PS1 endoproteolysis and impaired NCT maturation. Progressive truncation of the C-terminus caused increasing loss of function. This was also observed for an internal deletion mutant as well as for C-terminally tagged PEN-2 with a twofold elongated C-terminal domain. Interestingly, only simultaneous, but not individual substitution of the highly conserved D90, F94, P97 and G99 residues with alanine interfered with PEN-2 function. All loss of function mutants identified allowed PS1 endoproteolysis, but failed to stably associate with the resultant PS1 fragments, which like the PEN-2 loss of function mutants underwent proteasomal degradation. However, complex formation of the PEN-2 mutants with PS1 fragments could be recovered when proteasomal degradation was blocked. Taken together, our data suggest that the PS-subunit stabilizing function of PEN-2 depends on length and overall sequence of its C-terminal domain.  相似文献   

16.
17.
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.  相似文献   

18.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

19.
Gamma-secretase is a member of a new class of proteases with an intramembrane catalytic site and cleaves numerous type I membrane proteins, including the amyloid beta-protein precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: a heterodimeric form of presenilin (PS), composed of its N- and C-terminal fragments (PS-NTF and PS-CTF, respectively), a highly glycosylated, mature form of nicastrin (NCT), Aph-1, and Pen-2. However, it is unclear how these components interact physically with each other and assemble into functional complexes. We and others recently found that Aph-1 interacts with a less glycosylated, immature form of nicastrin as an intermediate toward full assembly of gamma-secretase. Here we show that (1) the detergent dodecyl beta-d-maltoside (DDM) mediates the dissociation and inactivation of active gamma-secretase in a concentration-dependent manner, (2) DDM-dependent dissociation of the active gamma-secretase complex generates two major inactive complexes (Pen-2-PS1-NTF and mNCT-Aph-1) and two minor inactive complexes (mNCT-Aph1-PS1-CTF and PS1-NTF-PS1-CTF), and (3) Pen-2 can also associate with the PS holoprotein in complexes devoid of NCT and Aph-1. Taken together, our results demonstrate that Pen-2 interacts with PS-NTF within active gamma-secretase and offer a model for how the components of active gamma-secretase interact physically with each other.  相似文献   

20.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号