首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to understand the mechanisms involved in the protective immunity to malarial sporozoites, an A/J mouse/Plasmodium berghei model was studied. Protective immunity could consistently be adoptively transferred only by using sublethal irradiation of recipients (500 R); a spleen equivalent (100 X 10(6))of donor cells from immune syngeneic mice; and a small booster immunization (1 X 10(4)) of recipients with irradiation-attenuated sporozoites. Recipient animals treated in this manner were protected from lethal challenge with 1 X 10(4) nonattenuated sporozoites. Immune and nonimmune serum and spleen cells from nonimmune animals did not protect recipient mice. Fewer immune spleen cells (50 X 10(6)) protected some recipients. In vitro treatment of immune spleen cells with anti-theta sera and complement abolished their ability to transfer protection. This preliminary study suggests that protective sporozoite immunity can be transferred with cells, and that it is T cell dependent.  相似文献   

2.
T cells from different subsets play a major role in protective immunity against pre-erythrocytic stages of malaria parasites. Exposure of humans and animals to malaria sporozoites induces (alphabeta CD8(+) and CD4(+) T cells specific for antigens expressed in pre-erythrocytic stages of Plasmodium. These T cells inhibit parasite development in the liver, and immunization with subunit vaccines expressing the respective antigenic moieties confers protection against sporozoite challenge. gammadelta and natural killer T cells can also play a role in protective immunity. Recent studies with mice transgenic for the alphabeta T-cell receptor have revealed the existence of complex mechanisms regulating the induction and development of these responses.  相似文献   

3.
In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. Immunization with sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. The protection induced by this immunization protocol proved to be very effective. Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. CD4(+) and CD8(+) T cells were, however, responsible for the protection through the induction of IFN-gamma and NO.  相似文献   

4.
The potent protective immunity against malaria induced by immunization of mice and humans with radiation-attenuated Plasmodium spp. sporozoites is thought to be mediated primarily by T-cell responses directed against infected hepatocytes. This has led to considerable efforts to develop subunit vaccines that duplicate this protective immunity, but a universally effective vaccine is still not available and in vitro correlates of protective immunity have not been established. Contributing to this delay has been a lack of understanding of the mechanisms responsible for the protection. There are now data indicating that CD8+ T cells, CD4+ T cells, cytokines, and nitric oxide can all mediate the elimination of infected hepatocytes in vitro and in vivo. By dissecting the protection induced by immunization with irradiated sporozoite, DNA and synthetic peptide-adjuvant vaccines, we have demonstrated that different T-cell-dependent immune responses mediate protective immunity in the same inbred strain of mouse, depending on the method of immunization. Furthermore, the mechanism of protection induced by a single method of immunization may vary among different strains of mice. These data have important implications for the development of pre-erythrocytic-stage vaccines designed to protect a heterogeneous human population, and of assays that predict protective immunity.  相似文献   

5.
One dose of 10(7) viable units of Mycobacterium bovis, strain BCG, protected a significant number of Swiss mice from a primary challenge with 10(4) thoracic sporozoites of Plasmodium berghei. Immunization with irradiated sporozoites induced greater protection than that observed in BCG-treated with BCG and surviving a primary sporozoite challenge were not protected from rechallenge, whereas mice immunized with irradiated sporozoites and surviving initial challenge of sporozoites were solidly immune to further challenge. Immunizing mice with BCG and irradiated sporozoites simultaneously resulted in a synergistic effect of increased protection against a primary challenge of sporozoites only if the two immunogens were administered on the same day and if the mice were challenged 1 to 3 days later. Mice given BCG and irradiated sporozoites and surviving a primary challenge of sporozoites were unable to survive rechallenge. BCG given to mice previously immunized with irradiated sporozoites suppressed their protective immunity against sporozoite challenge.  相似文献   

6.
THE development of protective immunity in a host against the sporozoite form of the malaria parasite would seem to be the ideal goal for total protection of the host. A number of workers have studied the feasibility of immunizing birds and rodents using killed or immobilized sporozoites. Sporozoites of Plasmodium gallinaceum, killed by several different techniques, are partially protective in that immunized birds were protected from dying, although all of the animals developed low grade parasitaemia1. More recently, rodents have been totally protected by immunization with X-irradiated sporozoites2, 3. Immunization of mice with 75,000 sporozoites of P. berghei irradiated with 8 or 10 krads of X-irradiation was sufficient to protect almost 98% of the animals2. These studies have also indicated that immunization with sporozoites of one species may confer varying degrees of immunity to challenge with other species of rodent malaria.  相似文献   

7.
We conducted a series of experiments to define Ir gene regulation of the immune response to Plasmodium berghei sporozoites and circumsporozoite (CS) protein-derived subunit vaccines. The studies demonstrated that there is no apparent genetic restriction of the capacity to develop protective immunity against a large sporozoite challenge after immunization with irradiation-attenuated P. berghei sporozoites; that the Th response to (Asp-Pro-Ala-Pro-Pro-Asn-Ala-Asn)n, the predominant protective B epitope on the P. berghei CS protein, is genetically restricted and regulated by Class II genes (I-Ab) and by genes in the Class I region (H-2Dk) or telomeric to this region; and that this restriction can be overcome by immunization with a r protein including the entire P. berghei CS protein. The results support the development of full length human CS protein vaccines to take advantage of all potential T epitopes on this protein.  相似文献   

8.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

9.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

10.
A/J mice were splenectomized (Splx) or sham-splenectomized (SSplx) prior to administration of a single injection of irradiated sporozoites. Following challenge 7 days after immunization, it was found that none of the splenectomized mice were protected whereas 50% of the sham-splenectomized and intact animals were resistant to challenge. In another series of experiments similar groups, along with mice splenectomized just prior to challenge, were injected with 1.5 × 105 irradiated sporozoites over a 5 week period. This resulted in protection of (1) 60–100% of the animals splenectomized before immunization, and (2) 90–100% protection of the animals splenectomized prior to challenge, as well as the intact and sham-splenectomized mice. Serum levels of antisporozoite antibodies (CSP and SNA) increased during immunization of the intact animals. Only 15–20% of the animals splenectomized prior to immunization presented positive CSP reactions and little if any sporozoite neutralizing activity (SNA) was detected. Serum from intact animals immunized and found resistant to sporozoite challenge was used for passive transfer studies. Immune serum recipients were challenged with small numbers of sporozoites. Only one out of 18 recipients was protected against sporozoite challenge.  相似文献   

11.
Even in the absence of an appropriate model or direct evidence, T cells have been hypothesized to exacerbate the manifestations of Lyme disease. To define definitely the role of T cells in Lyme disease, the course of disease in immunocompetent and B cell-deficient mice was compared. By 8 wk postinoculation, immunocompetent mice resolved both carditis and arthritis, whereas foci of myocarditis and severe destructive arthritis characterized disease of B cell-deficient mice. Cell transfer experiments using infected B6-Rag1 knock out mice demonstrated that: 1) innate immunity mediated the initial sequelae of infection, 2) transferring both naive T cells and B cells induced resolution of carditis and arthritis, 3) infected mice reconstituted with T cells developed myocarditis and severe destructive arthritis, and 4) CD4+ T cells were responsible for the observed immune-mediated pathology. These data demonstrate directly the deleterious effect of T cells in Lyme disease.  相似文献   

12.
The complexity of protective immunity against liver-stage malaria   总被引:28,自引:0,他引:28  
Sterile protective immunity against challenge with Plasmodium spp. sporozoites can be induced in multiple model systems and humans by immunization with radiation-attenuated Plasmodium spp. sporozoites. The infected hepatocyte has been established as the primary target of this protection, but the underlying mechanisms have not been completely defined. Abs, CD8+ T cells, CD4+ T cells, cytokines (including IFN-gamma and IL-12), and NO have all been implicated as critical effectors. Here, we have investigated the mechanisms of protective immunity induced by immunization with different vaccine delivery systems (irradiated sporozoites, plasmid DNA, synthetic peptide/adjuvant, and multiple Ag peptide) in genetically distinct inbred strains, genetically modified mice, and outbred mice. We establish that there is a marked diversity of T cell-dependent immune responses that mediate sterile protective immunity against liver-stage malaria. Furthermore, we demonstrate that distinct mechanisms of protection are induced in different strains of inbred mice by a single method of immunization, and in the same strain by different methods of immunization. These data underscore the complexity of the murine host response to a parasitic infection and suggest that an outbred human population may behave similarly. Data nevertheless suggest that a pre-erythrocytic-stage vaccine should be designed to induce CD8+ T cell- and IFN-gamma-mediated immune responses and that IFN-gamma responses may represent an in vitro correlate of pre-erythrocytic-stage protective immunity.  相似文献   

13.
We evaluated the effect of using Medium 199 alone and Medium 199 supplemented with 5% normal mouse serum, 5% fetal calf serum, 5% bovine serum albumin or 5% Albumax on Plasmodium yoelii sporozoite yield from infected mosquitoes and infectivity in BALB/c mice. The sporozoites yield, as well as their infectivity, was statistically lower (P = 0.0031) when unsupplemented Medium 199 was used to separate sporozoites from infected mosquitoes. Although Medium 199 supplemented with Albumax led to lower sporozoite yield (P < 0.0009), infectivity of the sporozoites was similar to those obtained with the other medium supplements. Because normal mouse serum supports good sporozoite infections and is also the supplement that can be used repeatedly in mice during multiple sporozoite injections without inducing anaphylaxis, we selected it to evaluate the infectivity of P. yoelii sporozoites in different strains of mice. After injecting mice with serial dilutions of sporozoites and detecting patent infections, we determined that the infective dose 50 (ID50) for BALB/c, C57Bl/6, A/J, and B10BR mice ranged between 4.9 and 10.6 sporozoites. The ID50 obtained for CD-1 mice (147 sporozoites) was significantly higher.  相似文献   

14.
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.  相似文献   

15.
Protective immunity and production of anti-sporozoite (CSP) antibody was studied in A/J mice injected with X-irradiated sporozoites using different immunization schedules and antigen doses. Data were also obtained on the immunogenicity of X-irradiated as compared to nonirradiated sporozoites. After a single immunization (1.5 × 105 or 7.5 × 104 X-irradiated sporozoites) a number of animals was completely protected when challenged, but the percentage of protected mice varied considerably from experiment to experiment. Maximal protection was obtained 7 days after the immunization. When the first injection of parasites was followed by a single booster administered 3, 4 or 5 days later, protection was considerably enhanced and the results more consistent. After a single injection of 1.5 × 105 or 7.5 × 104 sporozoites, CSP antibody was detectable from the 19th and 23rd day, respectively, i.e., at a time point when protection was diminishing. This antibody persisted only for a short period. When a single booster was given soon after the first injection, CSP antibody was present in the sera of all the mice from the ninth day on and persisted for greater than 80 days. A single dose of X-irradiated sporozoites injected into rats, induced antibody (CSP) formation which reached a peak after 2 weeks and persisted at this level for more than 3 months. However in rats injected with viable sporozoites, the antibody titers fell rapidly and became undetectable after 4 weeks.From these data we can conclude that (a) the immune response induced by attenuated X-irradiated sporozoites is considerably longer-lasting than that induced by viable sporozoites; (b) CSP antibodies are not detectable during the early stages of the immune response; and (c) protective immunity precedes the presence of detectable serum and antibodies.  相似文献   

16.
CD8+ T cells have been implicated as critical effector cells in protection against preerythrocytic stage malaria, including the potent protective immunity of mice and humans induced by immunization with radiation-attenuated Plasmodium spp. sporozoites. This immunity is directed against the Plasmodium spp. parasite developing within the host hepatocyte and for a number of years has been presumed to be mediated directly by CD8+ CTL or indirectly by IFN-gamma released from CD8+ T cells. In this paper, in BALB/c mice, we establish that after immunization with irradiated sporozoites or DNA vaccines parasite-specific CD8+ T cells trigger a novel mechanism of adaptive immunity that is dependent on T cell- and non-T cell-derived cytokines, in particular IFN-gamma and IL-12, and requires NK cells but not CD4+ T cells. The absolute requirement for CD8+ T cells to initiate such an effector mechanism, and the requirement for IL-12 and NK cells in such vaccine-induced protective immunity, are unique and underscore the complexity of the immune responses that protect against malaria and other intracellular pathogens.  相似文献   

17.
Proteins are released from the surface of sporozoites of Eimeria falciformis during their in vitro incubation in a detergent solution. Some of these proteins reacted with antibodies from infected mice and specifically stimulated the proliferation of mesenteric lymph node cells of these mice. Oral immunization of mice with liposome encapsulated sporozoite surface antigens protected mice against a challenge infection. Two proteins (M.W. 27 and 180 K) induced an antibody synthesis in these vaccinated mice.  相似文献   

18.
Adoptive immunization of A/Tru mice with splenic B cells or T cells from syngeneic donors with a primary, nonvirulent, Plasmodium yoelii (17X) infection confers on these recipients the capacity to resist a challenge infection with a virulent strain (YM) of P. yoelii. Unfractionated spleen cells as well as spleen cells enriched for T or B cells capable of transferring protective immunity were detected as early as Day 7 of the primary nonvirulent infection, and reached peak levels on Day 14. Spleen cells that were harvested from donor animals after resolution of the immunizing infection [on Days 21 or 28] were incapable of transferring protective immunity. The capacity of 7-day immune spleen cells to transfer immunity could be abolished by pretreatment with mitomycin C. In addition, it was found that immunocompetent recipient mice were required for successful adoptive immunization, since thymectomized, irradiated, bone marrow reconstituted mice infused with immune spleen cells failed to survive lethal challenge infections.  相似文献   

19.
20.
Seruminduced hypersensitivity protected some mice against intraperitoneal (ip) sporozoite challenge but not against intravenous challenge. The injection of serotonin 4 hr prior to challenge destroyed this protection. This protection does not appear to be additive to sporozoite immunization. Protection induced by ip injections of 70 salivary glands per injection appeared to be largely suppressed by prior injection of serotonin. It was concluded that hypersensitivity may possibly be at least partly responsible for protection by injections of 70 salivary glands, but that sporozoite immunity is not primarily due to hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号