首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Previous studies from this laboratory have shown that pyridoxal-5-sulphate, the synthetic analogue of pyridoxal phosphate, causes epileptic seizures including tonic-clonic convulsions. These seizure activities are prevented or reversed by GABA or muscimol. In an attempt to delineate the biochemical basis of these seizure processes further, we have studied and shown that pyridoxal sulphate is a competitive inhibitor of glutamic acid decarboxylase. In addition, the chronic administration of pyridoxal sulphate was shown to reduce the concentration of pyridoxal phosphate in the cerebellum, the cerebrum, and basal ganglion, but not in the hippocampus. The activity of hippocampal glutamic acid decarboxylase was reduced after 1, 3, and 5 days of chronic application of pyridoxal sulphate. The inhibition was demonstrated, whether glutamic acid decarboxylase was assayed in the presence or absence of its coenzyme pyridoxal phosphate. Unlike findings in the hippocampus, the activity of glutamic acid decarboxylase in other brain regions was unaffected following chronic application of pyridoxal sulphate. The selective toxic effects of pyridoxal sulfate to the hippocampus, a brain area well known for its high susceptibility to seizure discharges, deserve additional indepth investigation.  相似文献   

2.
3.
Purification of plant glutamic acid decarboxylase   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Crayfish glutamic acid decarboxylase (GAD), like the homologous enzymes from other species, is inhibited by carbonyl-trapping agents (e.g. aminooxyacetic acid; AOAA) and sulfhydryl reagents (e.g. 5,5-dithiobis-(2-nitrobenzoic acid); DTNB). It also is inhibited by the product GABA, many anions (e.g. SCN and Cl), and some cations (e.g. Zn+2). The inhibition by AOAA, but not that by DTNB, was prevented by increasing the concentration of the pyridoxal phosphate (PLP) coenzyme. GABA blocked the effects of PLP on enzyme activity. The inhibition by AOAA, DTNB, GABA, and chloride all were competitive with substrate. The effect of GABA occurs at physiological concentrations and may contribute to the regulation of GAD activity in vivo. The quantitative effect of anions is dependent on the cation with which they are administered. ATP stimulated GAD activity in homogenates prepared with potassium phosphate or Tris-acetate buffer, even when no exogenous PLP was provided.  相似文献   

6.
谷氨酸脱羧酶研究进展   总被引:2,自引:0,他引:2  
谷氨酸脱羧酶(glutamic acid decarboxylase,GAD,EC4.1.1.15)在生物体内广泛存在,其催化产物γ-氨基丁酸(γ-aminobutyric acid,GABA)是哺乳动物体内一种重要的抑制性神经递质。在对自身免疫性疾病以及糖尿病研究中,特别是1型糖尿病,GAD、GABA以及谷氨酸脱羧酶抗体(glutamic acid decarboxylase-antibody,GAD-Ab)等的水平作为病理分析、疾病诊断、免疫治疗的重要参数,历来备受研究者关注。本文就GAD及其催化产物GABA的研究进展进行了综述,为更好地研究自身免疫性疾病的发病机理,探索更加有效安全的治疗方法提供参考。  相似文献   

7.
8.
The catalytic activity of the enzyme L-glutamic acid decarboxylase (GAD) is determined by an amperometric method based on a recently developed glutamate-selective biosensor. The biosensor is composed of an amperometric H2O2 electrode and a biocatalytic membrane containing the enzyme glutamic acid oxidase (GAO). The biosensor allows the direct and continuous measurement of GA levels by monitoring the H2O2 produced at the electrode interface as a coproduct of the GAO-catalyzed GA oxidation to alpha-ketoglutaric acid. Since GA is transformed to gamma-aminobutyric acid and CO2 under the catalytic activity of GAD, the rate of GA consumption in solution, monitored by the GAO biosensor, represents a reliable measure of GAD catalytic activity. Additional experiments performed in the presence of different concentrations of the GAD inhibitor valproic acid have shown the suitability of the proposed approach for the study of GAD inhibitors also. Discussion of the main experimental characteristics of this new analytical method is given in terms of sensitivity, reproducibility, and reliability of the experimental results and ease, time, and cost of operation.  相似文献   

9.
10.
Experiments with isolated wheat roots and with intact wheat plants showed that glutamic acid decarboxylase from the roots takes part in the transformation of substance in the medium and that its activity is influenced by the medium. Glutamic acid decarboxylase is thus a factor taking part in the formation of substances excreted by the plants roots.  相似文献   

11.
12.
13.
14.
15.
The recombinant forms of the two human isozymes of glutamate decarboxylase, GAD65 and GAD67, are potently and reversibly inhibited by molecular oxygen (Ki = 0.46 and 0.29 mM, respectively). Inhibition of the vesicle-associated glutamate decarboxylase (GAD65) by molecular oxygen is likely to result in incomplete filling of synaptic vesicles with gamma-aminobutyric acid (GABA) and may be a contributing factor in the genesis of oxygen-induced seizures. Under anaerobic conditions, nitric oxide inhibits both GAD65 and GAD67 with comparable potency to molecular oxygen (Ki = 0.5 mM). Two forms of porcine cysteine sulfinic acid decarboxylase (CSADI and CSADII) are also sensitive to inhibition by molecular oxygen (Ki = 0.30 and 0.22 mM, respectively) and nitric oxide (Ki = 0.3 and 0.2 mM, respectively). Similar inhibition of glutamate decarboxylase and cysteine sulfinic acid decarboxylase by two different radical-containing compounds (O2 and NO) is consistent with the notion that these reactions proceed via radical mechanisms.  相似文献   

16.
谷氨酸脱羧酶若干研究进展   总被引:11,自引:0,他引:11  
谷氨酸脱羧酶是γ-氨基丁酸的合成酶,主要存在脑和胰岛中。因体内存在多种形成的谷氨酸脱羧酶,现无获得各种均一的谷氨酸脱羧酶的 统一方法。谷氨酸脱羧酶的克隆和表达,既弄清了谷氨酸脱羧酶的基因结构与定位,又为谷氨酸脱酶的大规模应用奠定了基础。目前认为谷氨酸脱羧酶是Ⅰ型糖尿病的始动靶抗原,体内注入谷氨酸脱羧酶可预防或延缓NOD(nonobese diabetic)小鼠Ⅰ型糖尿病的发生。  相似文献   

17.
Studies of the GABA-synthetic enzyme glutamate decarboxylase (glutamic acid decarboxylase; GAD; E.C.4.1.1.15) began in 1951 with the work of Roberts and his colleagues. Since then, many investigators have demonstrated the structural and functional heterogeneity of brain GAD. At least part of this heterogeneity derives from the existence of two GAD genes.In honor of the 70th birthday of Dr. Eugene Roberts  相似文献   

18.
19.
An automated assay for determination of glutamic acid decarboxylase activity is described. The PCO2 of an incubation medium is used as a measure of total CO2 formed by enzymic decarboxylation of glutamate. Details of manifold construction, reagent composition, and data concerning the reliability of the method are presented.  相似文献   

20.
In this work, we report that the recombinant glutathione S-transferase (GST)-human L-glutamic acid decarboxylase (HGAD) isoforms, 65-kDa L-glutamic acid decarboxylase (GAD) (GST-HGAD65) fusion protein or free truncated HGAD65, were activated by apocalmodulin (ApoCaM) to an extent of 60%. Both truncated forms of GAD67 (tGAD67), HGAD67(Delta1-70) and HGAD67(Delta1-90), were markedly activated by ApoCaM to an extent of 141 and 85%, respectively, while GST-HGAD67 was not significantly affected. The activation appears to be due to an increase of GAD affinity for its cofactor, pyridoxal phosphate (PLP). This conclusion is based on the following observations. Firstly, the V(max) of GAD was increased when ApoCaM was present whereas the affinity for the substrate, glutamate, was not affected. Secondly, the affinity of GAD for PLP was increased in the presence of ApoCaM. Thirdly, results from calmodulin-agarose affinity column chromatography studies indicated a direct interaction or binding between ApoCaM and GAD. Fourthly, ApoCaM was found to be copurified with GAD65/GAD67 by anti-GAD65/67 immunoaffinity column using rat brain extract. Hence, it is proposed that a conformational change is induced when ApoCaM interacts with GAD65 or tGAD67, resulting in an increase of GAD affinity for PLP and the activation of GAD. The physiological significance of the interaction between GAD and ApoCaM is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号