首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 1987 we have studied weekly change in winter (December–April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65–85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO3, NH4+, dissolved inorganic nitrogen (DIN), and SO42−. Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO42− flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (CB), HCO3, and Cl concentrations declined with increased stream water discharge, K+, NO3, and SO42− remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO3 and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems.  相似文献   

2.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

3.
We assessed the potential impact of global warming resulting from a doubling of preindustrial atmospheric CO2 on soil net N transformations by transferring intact soil cores (0–15 cm) from a high-elevation old-growth forest to a forest about 800 m lower in elevation in the central Oregon Cascade Mountains, USA. The lower elevation site had mean annual air and soil (10-cm mineral soil depth) temperatures about 2.4 and 3.9 °C higher than the high-elevation site, respectively. Annual rates of soil net N mineralization and nitrification more than doubled in soil transferred to the low-elevation site (17.2–36.0 kg N ha–1 and 5.0–10.7 kg NO3–N ha–1, respectively). Leaching of inorganic N from the surface soil (in the absence of plant uptake) also increased. The reciprocal treatment (transferring soil cores from the low- to the high-elevation site) resulted in decreases of about 70, 80, and 65% in annual rates of net N mineralization, nitrification, and inorganic N leaching, respectively. Laboratory incubations of soils under conditions of similar temperature and soil water potential suggest that the quality of soil organic matter is higher at the high-elevation site. Similar in situ rates of soil net N transformations between the two sites occurred because the lower temperature counteracts the effects of greater substrate quantity and quality at the high elevation site. Our results support the hypothesis that high-elevation, old-growth forest soils in the central Cascades have higher C and N storage than their low-elevation analogues primarily because low temperatures limit net C and N mineralization rates at higher elevations.  相似文献   

4.
Solution chemistry profiles of mixed-conifer forests before and after fire   总被引:6,自引:2,他引:4  
Solution chemistry profiles of mixed-conifer forests in granitic catchments of the Sierra Nevada were measured for three years before (1987–1990) and three years after (1990–1993) prescribed fire. Wet deposition, throughfall and soil solution samplers were installed in both white-fir and giant-sequoia dominated forest stands underlain by poorly developed inceptisols. Stream water chemistry was monitored as part of an ongoing study of catchment outputs. Calcium, NO 3 and Cl were the major ions in precipitation. Canopy leaching increased mean concentrations of all major ions, especially K+ and Ca2+. Water flux through the soil occurred largely during spring snowmelt. Forest floor leachate represented the most concentrated solutions of major ions. Interaction with the mineral soil decreased mean concentrations of most species and the average composition of soil solutions closely resembled stream water at baseflow. Bicarbonate alkalinity, Ca2+, Mg2+, and Na+ were enriched in stream water relative to precipitation whereas inputs of H+, NH 4 + , NO 3 and SO 4 2– were retained within the catchments.Burning of the forest understory and litter layer increased solute concentrations in soil solution and stream water. Mean soil solution Ca2+, Mg2+ and K+ concentrations increased more than 10 fold, but the relative predominance of these cations was not affected by burning. Sulfate concentration, which was very low in soil solutions of undisturbed stands (<25 mmolc m–3), increased more than 100 times following fire. Ammonium concentration exhibited a rapid, short-term increase and then a decrease below pre-burn levels. Changes in soil solution chemistry were reflected in catchment outputs.Corresponding author.  相似文献   

5.
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 ?) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30?min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3 ? isotopes to help interpret the drivers of variable NO3 ? and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 ? and FDOM concentrations. An observed decrease in NO3 ? concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 ? (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 ? variability of 1–2?μmol?l?1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 ? and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (?4 to 1% for NO3 ? and ?3 to ?14% for DOC), but resulted in much larger differences for daily yields (?66 to +27% for NO3 ? and ?88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 ? and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems.  相似文献   

6.
The fluxes and transformations of nitrogen (N) were investigated from 1985 through 1987 at the Emerald Lake watershed (ELW), a 120 ha high-elevation catchment located in the southern Sierra Nevada, California, USA. Up to 90% of annual wet deposition of N was stored in the seasonal snowpack; NO 3 and NH 4 + were released from storage in the form of an ionic pulse, where the first fraction of meltwater draining from the snowpack had concentrations of NO 3 and NH 4 + as high as 28 eq L–1 compared to bulk concentrations of <5 eq L–1 in the snowpack. The soil reservoir of organic N (81 keq ha–1) was about ten times the N storage in litter and biomass (12 keq ha–1). Assimilation of N by vegetation was balanced by the release of N from soil mineralization, nitrification, and litter decay. Mineralization and nitrification processes produced 1.1 keq ha–1 yr–1 of inorganic N, about 3 1/2 times the loading of N from wet and dry deposition. Less than 1% of the NH 4 + in wet and dry deposition was exported from the basin as NH 4 + . Biological assimilation was primarily responsible for retention of NH 4 + in the basin, releasing one mode of H+ for every mole of NH 4 + retained and neutralizing about 25% of the annual acid neutralizing capacity produced by mineral weathering in the basin. Nitrate concentrations in stream waters reached an annual peak during the first part of snowmelt runoff, with maximum concentrations in stream water of 20 eq L–1, more than 4 times the volume-weighted mean annual concentrations of NO 3 in wet deposition. This annual peak in stream water NO 3 was consistent with the release of NO 3 from the snowpack in the form of an ionic pulse; however soil processes occurring underneath the winter snowpack were another potential source of this NO 3 . Concentrations of stream water NO 3 during the summer growing season were always near or below detection limits (0.5 eq L–1).  相似文献   

7.
Global warming has caused shifts in the flowering time of many plant species. In alpine regions the temperature rise has been especially pronounced and together with decreasing winter precipitation has led to earlier snowmelt. The close association between time of snowmelt and plant growth at high elevations makes climate change for alpine plants particularly threatening. Here we transplanted eleven congeneric pairs of high- and low-elevation herbaceous species to common gardens differing c. 800 m in elevation, and c. 4 °C in mean growing season temperature to test whether reproductive phenologies of high- and low-elevation plants differ in their respective responses to temperature. Results indicate that high-elevation plants were less plastic in response to transplantation than their low-elevation congeners as the onsets of phenophases on average shifted 7 days less than in low-elevation plants. Plasticity of phenophase durations was overall weaker than that of phenophase onsets, and slightly stronger in high-elevation species compared to low-elevation congeners. We suggest that weaker plasticity in the onsets of early stages of reproductive phenology of high-elevation plants is related to spring frost, which constitutes a strong selective agent against early loss of winter hardiness. Some of the plastic responses of both low- and high-elevation species might potentially be adaptive under predicted climate change. However, the observed plasticity can be largely explained as a passive response to temperature and not as the result of natural selection in heterogeneous environments. The strong temperature-sensitivity of low-elevation species might promote their upward range expansion, but only to a certain threshold after which it becomes limited by the short growing season.  相似文献   

8.
Ground water inputs and outputs of N were studied for a small ground water discharge swamp situated in a headwater drainage basin in southern Ontario, Canada. Darcy's equation with data for piezometers was used to measure inputs of shallow local ground water at the swamp margin and deep regional ground water beneath the swamp. Ground water flux was also quantified by measuring ground water discharge to the outlet stream draining the swamp in combination with a chemical mixing model to separate shallow and deep ground water components based on chloride differences. Estimates of shallow ground water flux determined by these two approaches agreed closely however, the piezometer data seriously underestimated the deep ground water input to the swamp. An average ground water input-output budget of total N (TN) total organic nitrogen (TON) ammonium (NH4 +-N) and nitrate (NO3 --N) was estimated for stream base flow periods which occurred on an average of 328 days each year during 1986–1990. Approximately 90% of the annual NO3 --N input was contributed by shallow ground water at the swamp margin. Deep ground water represented about 65% of the total ground water input and a similar proportion of TON and NH4 +-N inputs. Annual ground water NO3 --N inputs and outputs were similar whereas NH4 +-N retention was 4 kg ha-1 representing about 68% of annual ground water input. Annual TON inputs in ground water exceeded outputs by 7.7 kg ha (27%). The capacity of the swamp to regulate ground water N fluxes was influenced by the N chemistry of ground water inputs and the hydrologic pathways of transport within the swamp.  相似文献   

9.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

10.
Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S, and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds. Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and 435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes, these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area. Received 13 August 1998; accepted 7 September 1999.  相似文献   

11.
During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 eq/L in one of the streams and more than 1000 eq/L in the other, from pre-liming values which ranged from –25 to +40 eq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams.After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO 3 concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO 3 concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO 3 concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment.In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO 3 concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO 4 , NO 3 , Cl) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters.  相似文献   

12.
Long-term trends in ion concentrations of bulk precipitation, throughfall, forest floor leachate (humus water) and shallow and deep soil water were assessed at two Sitka spruce (Picea sitchensis) stands—one on an Atlantic peat bog in the west of Ireland (Cloosh), the other on the east coast on a peaty podzol (Roundwood). Deposition at Cloosh was dominated by marine ions (sodium, [Na+], chloride [Cl?], and magnesium [Mg2+]), whereas bulk precipitation and throughfall at Roundwood was characterized by inputs of non-marine sulphate (nmSO4 2?), acidity and inorganic nitrogen (NH4 +, NO3 ?). Significant declines in concentrations of nmSO4 2? and acidity in bulk precipitation and throughfall were observed at both sites. The decline in throughfall nmSO4 2? was significantly related to reductions in European sulphur dioxide (SO2) emissions. At Roundwood, SO4 2? declined significantly in humus, shallow and deep soil water. In deep soil water this was accompanied by a long-term increase in pH and a reduction in total aluminum (Altot). The recovery from acidification was delayed by high concentrations of NO3 ?, which strongly influenced acidity and Altot concentrations. At Cloosh, there was a significant decline in SO4 2? in humus water but long-term trends were not evident in shallow or deep soil water; SO4 2? concentrations at these depths fluctuated in response to drought-events. Marine ions strongly influenced soil water chemistry at both sites; at Cloosh soil water acidity was strongly related to Na+ and Cl?, while at Roundwood, Na+, Cl? and Mg2+ influenced Altot concentrations. Dissolved organic carbon increased significantly in humus and soil water at Roundwood, where it was associated with declining acidity. Soil water at both sites was influenced by a combination of anthropogenic sulphur (S) and nitrogen (N) deposition, drought and sea-salt events. The study highlights the value of long-term monitoring in assessing the response of forest soils to S and N deposition against a background of climate influences on soil water through drought and sea-salt events.  相似文献   

13.
Rapid industrialization in East Asia is causing adverse effects due to atmospheric deposition in terrestrial and freshwater ecosystems. Decreasing stream pH and alkalinity and increasing NO3 ? concentrations were observed throughout the 1990s in the forested Lake Ijira catchment in central Japan. We investigated these changes using data on atmospheric deposition, soil chemistry, stream water chemistry, and forest growth. Average atmospheric depositions (wet + dry) of 0.83, 0.57, and 1.37 kmol ha?1 year?1 for hydrogen, sulfur, and nitrogen, respectively, were among the highest levels in Japan. Atmospheric deposition generally decreased before 1994 and increased thereafter. The catchment was acid-sensitive; stream alkalinity was low (134 μmolc l?1) and pH in surface mineral soils decreased from 4.5 in 1990 to 3.9 in 2003. Stream NO3 ? concentration nearly doubled (from 22 to 42 μmolc l?1) from the late 1980s to the early 2000s. Stream NO3 ? concentration was controlled primarily by water temperature before 1996/1997 and by stream discharge thereafter. Stream NO3 ? concentrations decreased during the growing season before 1996/1997, but this seasonality was lost thereafter. The catchment became nitrogen-saturated (changing from stage 1 to 2) in 1996/1997, possibly because of declining forest growth rates due to the 1994 summer drought, defoliation of Japanese red pine by pine wilt disease, maturation of Japanese cedar stands, and stimulation of nitrogen mineralization and nitrification due to alkalinization of soils (increased exchangeable Ca2+ and soil pH) after the summer drought. Stream pH and alkalinity began decreasing in 1996/1997. The enhanced growing-season NO3 ? discharge since 1996/1997 appeared to be the major cause of stream acidification. Increased atmospheric deposition since 1994 may have contributed to this change.  相似文献   

14.
1. Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5 cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25 cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70 cm. 2. Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5 cm accounted for 68% of the mean depth‐integrated denitrification rate. 3. Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two‐source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5 cm) in Emmons Creek. 4. Vertical profiles showed that nitrate concentration in shallow ground water was about 10–60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73 mg NO3‐N L?1, respectively. 5. Deep ground water tended to be oxic (6.9 mg O2 L?1) but approached anoxia (0.8 mg O2 L?1) after passing through shallow, organic carbon‐rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6. Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments.  相似文献   

15.
Nitrogen transformations in the soil, and the resulting changes in carbon and nitrogen compounds in soil percolate water, were studied in two stands of Norway spruce (Picea abies L.). Over the last 30 years the stands were repeatedly limed (total 6000 kg ha–1), fertilized with nitrogen (total about 900 kg ha–1), or both treatments together. Both aerobic incubations of soil samples in the laboratory, and intact soil core incubations in the field showed that in control plots ammonification widely predominated over nitrification. In both experiments nitrogen addition increased the formation of mineral-N. In one experiment separate lime and nitrogen treatments increased nitrification, in the other, only lime and nitrogen addition together had this effect. In one experiment immobilization of nitrogen to soil microbial biomass was lower in soil only treated with nitrogen. Soil percolate water was collected by means of lysimeters placed under the humus layer and 10 cm below in the mineral soil. Total N, NH4-N and NO3-N were measured, and dissolved organic nitrogen was fractioned according to molecular weight. NO3-N concentrations in percolate water, collected under the humus layer, were higher in plots treated with N-fertilizer, especially when lime was also added. The treatments had no effect on the N concentrations in mineral soil. A considerable proportion of nitrogen was leached in organic form.  相似文献   

16.
Fluxes and stores of SO 4 2– were measured in a small Canadian Shield basin during the 1989 snowmelt. Sulphate flux from the unsaturated zone (14.1 ± 7.3 kg ha–1) was four times the amount supplied in meltwater and precipitation (3.5 ± 0.4 kg ha–1). This reflects flushing of soluble S04- from organic and upper mineral soil horizons during melt, which counteracted potential dilution of groundwater SO 4 2– levels by large water inputs to the basin. 35.6 ± 12.4 kg SO 4 2– entered the saturated zone during melt, supplied equally by leaching from overlying soils and conversion of the capillary fringe to phreatic water due to rising water table levels. Streamflow conveyed 70% of the total SO 4 2–1 export of 10.1 ± 2.3 kg ha–1, and was largely supplied by groundwater discharge from a wotland in the lower portion of the basin. The remaining 30% of total export was via shallow subsurface flow. Results highlight the importance of unsaturated and saturated zone processes for SO 4 2– dynamics and export during snowmelt.  相似文献   

17.
1. Experiments simulating spring acidic snowmelt episodes were conducted to determine the effects of short-term inputs of H+ and Al on the chemistry and biology of a poorly buffered mountain stream. HC1 and A1C13 were added in separate experiments to first- to third-order reaches of a New Hampshire stream. 2. Cation exchange and Aln+ dissolution reactions neutralized experimentally added H +, whereas groundwater dilution was insignificant. Mobilized Ca++, Mg++ and Aln+ concentrations progressively increased from third- to first-order reaches during HC1 additions. Mobilization of Ca++ and Mg++ was greater during A1C13 than HC1 addition. 3. Total phosphorus was mobilized from stream sediments during both HCI and A1C13 addition. Dissolved organic carbon (DOC) decreased during A1C13 addition in the second-order but not in the third-order reach. DOC concentration decreased during HCI addition only when Aln + mobilized from the stream bottom was >0.28 mg AI 11. 4. Production of foam at the water surface during AlCl3 addition to a second-order and HCl addition to a first-order reach indicated a reduction in surface tension of the streamwater and may be related to complexation reactions between Al and DOC at low pH (4–5). 5. Mayfly nymphs and blackfly and chironomid larvae drifted at greater rates from HCl- and AlCl3treated sections of first- and second-order streams than from corresponding reference areas. 6. When stream pH was lowered to 5.25–5.5 by HCI alone (15 μg monomeric inorganic Al l?1), the behaviour of aquatic invertebrates did not change, but pH reduced to the same range during Al additions (280μg Al 1?1) did affect it. Therefore, fluctuating aluminium concentrations in low-order streams at a pH range of 4.5–5.5 may alter the biology and geochemistry of poorly buffered waters.  相似文献   

18.
Soil and stream water chemistry in a pristine and boggy site in mid-Norway   总被引:5,自引:5,他引:0  
Stream- and soilwater at the 18.7 ha pristineIngabekken catchment, on gneiss bedrock at Høylandet,have been studied for three years, including intensiveepisode studies in spring and autumn. The site mainlyconsists of blanket bogs which are typical for thesemarine west coast climates. Water drains through theblanket peats by means of two major flowpaths. Eachflowpath contributes to the stream with a distinctchemical fingerprint rendered by the soil/soil waterinteractions along the flowpath, i.e. they may beregarded as end-members. The soil water from the upperpeat layers is the end-member representative ofstormflow discharge whereas baseflow originates mainlyfrom seepage of the other end-member, which is themineral soil water from beneath the peat. ThepHBaCl2 of the soils that control the runoffchemistry during highflow conditions was as low as2.6, allowing for a substantial pH drop in streamwaterin the case of a seasalt episode. pH in the streamvaried from more than 7 at baseflow to 5 or slightlybelow at stormflow. The lowest pH (4.8) was observedduring early snowmelt due to release of meltwaterhighly enriched in seasalts. The fraction ofexchangeable aluminum (AlS) was much higher in thesurface layers of the lower reaches of the catchmentthan close to the water divide. This suggests atransport of Al, much like podzolisation, thoughdownslope by a lateral flowpath. A Principal ComponentAnalysis on the stream water chemical data shows theimportance of water flowpaths in addition to dilutionor ionic strength and antecedent conditions as afactor in determining the water quality. On the planeof the two major principal components the base cations(Ca2+, Mg2+, Na+, K+) werenegatively related to [H+], and the total organiccarbon (TOC) was negatively related to strong acidanions (Cl-, SO4 2-, NO3 -).These relationships between the parameter loadingsalong the two main principal components remainedindifferent to the effects of both dilution andflowpaths.Under the present conditions of low acid deposition,this sensitive system is effectively buffered by itsweak acids and all released Al is complexed by naturalorganic acids. Similar boggy areas located in regionswith heavy anthropogenic acid deposition may not beable to neutralize the mineral acids. A shallow waterflowpath and a high H+ saturation of the ionexchanger in the soils controlling the highflowchemistry may lead to discharge episodes where strongmineral acids are allowed to pass through the systemreleasing elevated levels of toxic aluminum in thestream.  相似文献   

19.
In regions with airborne contaminants and large snowpacks, there is concern over the impact that snowmelt chemical pulses — periods of sharp increase in meltwater solute concentration — could have on aquatic resources during spring runoff. A major variable in determining such an effect is the flow path of snowmelt solutes to the stream or lake. From December 1988, to late April 1989, the quality and quantity of precipitation, snowmelt, soil solution and streamwater were measured in a 176-ha gauged watershed on the south shore of Lake Superior. The main objectives were to (1) examine the change in flow path meltwaters take to the stream during distinct winter and spring hydrologic periods, (2) quantify ecosystem-level ion budgets prior to, during, and following snowmelt, and (3) examine if streamwater chemistry might be a sensitive indicator of change in ecosystem flow paths. Prior to peak snowmelt, groundwater made up 80% of stream discharge. During peak snowmelt, the groundwater level rose to the soil surface resulting in lateral water movement through near-surface macropores and as overland flow. Near the end of snowmelt, melt-waters exerted a piston action on deeper soil solution again increasing its relative contribution to streamwater discharge. Net groundwater drawdown during the study resulted in streamwater discharge about equal to precipitation inputs. Unfrozen soils and brief mid-winter thaws resulted in steady snowmelt throughout early and mid-winter. The snowpack lost > 50% of most ions prior to the period of major snowmelt and high stream discharge in late March and early April. Snowmelt and streamwater NO3 and NH4 pulses occurred before the period of overland flow and peak streamwater discharge (April 4–24). During overland flow, stream discharge of total N, P, DOC, and AI peaked. Nutrient budgets computed for distinct hydrologic periods were much more helpful in explaining ecosystem pathways and processes than were changes in solute concentration. For the study period, watershed base cation (CB) discharge was 23 times input and SO4 2– discharge exceeded input by 42%. H+ was the most strongly conserved ion with output < 0.2% of input. Also conserved were NH4 + with only 1.4% of input leaving the ecosystem and NO3 with output equal to 9.4% of input.  相似文献   

20.
Foxes in the Greater Yellowstone Ecosystem are reported to show high frequencies of blonde and gray coat colors. A survey of park sighting records showed that the frequency of the novel coat colors significantly increases at elevations greater than 2300 m, suggesting some form of elevational isolation. We evaluated the degree of genetic separation between the high-elevation foxes (>2300 m) and contiguous populations of foxes at mid-elevations (1600–2300m). Low-elevation (>1600 m) foxes from North Dakota, >1000 km straight line distance from our populations, were used as a control group. We genotyped 15 high-elevation, 15 mid-elevation, and 10 low-elevation foxes at 10 microsatellite loci each. Heterozygosity was significantly lower in both the high-elevation and mid-elevation populations compared to the low-elevation foxes. The genetic differentiation was significantly greater between the high-elevation and mid-elevation foxes than between the mid-elevation and low-elevation foxes. Similarly, estimates of RST and FST suggest less gene flow occurs between the contiguous high- and mid-elevation fox populations than between the mid- and low-elevation fox populations separated by > 1000 km. The assignment test further supports this hypothesis. Although further work is needed, we suggest that the high-elevation foxes are remnant populations from the Wisconsin glaciation and should be managed as a unique population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号