首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galectin 3 is a beta-galactoside binding protein which localizes to the cytoplasm of proliferative, mature, and hypertrophic chondrocytes in the growth plate cartilage of developing long bones. To elucidate the function of galectin 3 during bone development, we examined the epiphyseal femurs and tibias of fetal mice carrying a null mutation for the galectin 3 gene. Detailed histological and ultrastructural studies identified abnormalities in the cells of the proliferative, mature, and hypertrophic zones and in the extracellular matrix of the hypertrophic zone, as well as a reduction in the total number of hypertrophic chondrocytes. The expression patterns of several chondrocyte and bone cell markers were analyzed and revealed a subtle modification of Ihh expression in the galectin 3 mutant growth plate. A striking difference was observed at the chondrovascular junction where many empty lacunae are present. In addition, large numbers of condensed chondrocytes exhibiting characteristic signs of cell death were found in the late hypertrophic zone, indicating that the rate of chondrocyte death is increased in the mutants. These results suggest a role for galectin 3 as a regulator of chondrocyte survival. In addition, this unique phenotype shows that the elimination of chondrocytes and vascular invasion can be uncoupled and indicates that galectin 3 may play a role in the coordination between chondrocyte death and metaphyseal vascularization.  相似文献   

2.
We have investigated the early cellular events that take place during the change in lineage commitment from hypertrophic chondrocytes to osteoblast-like cells. We have induced this osteogenic differentiation by cutting through the hypertrophic cartilage of embryonic chick femurs and culturing the explants. Immunocytochemical characterization, [3H]thymidine pulse-chase labeling, in situ nick translation or end labeling of DNA breaks were combined with ultrastructural studies to characterize the changing pattern of differentiation. The first responses to the cutting, seen after 2 d, were upregulation of alkaline phosphatase activity, synthesis of type I collagen and single-stranded DNA breaks, probably indicating a metastable state. Associated with the change from chondrogenic to osteogenic commitment was an asymmetric cell division with diverging fates of the two daughter cells, where one daughter cell remained viable and the other one died. The available evidence suggests that the viable daughter cell then divided and generated osteogenic cells, while the other daughter cell died by apoptosis. The results suggest a new concept of how changes in lineage commitment of differentiated cells may occur. The concepts also reconcile previously opposing views of the fate of the hypertrophic chondrocyte.  相似文献   

3.
Hypertrophic “light” and “dark” chondrocytes have been reported as morphologically distinct cell types in growth cartilage during endochondral ossification in many species, but functional differences between the two cell types have not been described. The aim of the current study was to develop a pellet culture system using chondrocytes isolated from epiphyseal cartilage of neonatal mice and rats, for the study of functional differences between these two cell types. Hypertrophic chondrocytes resembling those described in vivo were observed by light and electron microscopy in sections of pellets treated with triiodothyronine, 1% fetal calf or mouse serum, 10% fetal calf serum or 1.7 MPa centrifugal pressure at day 14, and in pellets cultured with insulin or 0.1% fetal calf or mouse serum at day 21. A mixed population of light and dark chondrocytes was found in all conditions leading to induction of chondrocyte hypertrophy. This rodent culture system allows the differentiation of light and dark chondrocytes under various conditions in vitro and will be useful for future studies on tissue engineering and mechanisms of chondrocyte hypertrophy.  相似文献   

4.
《Biophysical journal》2022,121(1):131-141
The biophysical features of a cell can provide global insights into diverse molecular changes, especially in processes like the dedifferentiation of chondrocytes. Key biophysical markers of chondrocyte dedifferentiation include flattened cellular morphology and increased stress-fiber formation. During cartilage regeneration procedures, dedifferentiation of chondrocytes during in vitro expansion presents a critical limitation to the successful repair of cartilage tissue. Our study investigates how biophysical changes of chondrocytes during dedifferentiation influence the nuclear mechanics and gene expression of structural proteins located at the nuclear envelope. Through an experimental model of cell stretching and a detailed spatial intranuclear strain quantification, we identified that strain is amplified and the distribution of strain within the chromatin is altered under tensile loading in the dedifferentiated state. Further, using a confocal microscopy image-based finite element model and simulation of cell stretching, we found that the cell shape is the primary determinant of the strain amplification inside the chondrocyte nucleus in the dedifferentiated state. Additionally, we found that nuclear envelope proteins have lower gene expression in the dedifferentiated state. This study highlights the role of cell shape in nuclear mechanics and lays the groundwork to design biophysical strategies for the maintenance and enhancement of the chondrocyte phenotype during cell expansion with a goal of successful cartilage tissue engineering.  相似文献   

5.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

6.
Epiphyseal chondrocytes end their life cycle through apoptosis. While this event provides a mechanism for the removal of terminally differentiated cells from cartilage, agents that promote this physiological process have not been defined. To address this issue, using a cell culture technique that models events that take place in the growth plate, we asked the following questions: Can agents that promote chondrocyte maturation and cartilage mineralization serve as specific triggers for cell death? Are chondrocytes susceptible to apoptogens at a singular developmental stage? Treatment of embryonic tibial chondrocytes with inorganic phosphate (Pi) induced death in a dose- and time-dependent manner. Within 48 hr, 3 mM Pi increased chondrocyte death by 30%; lower concentrations of Pi induced death after 48 hr. To ascertain if death was due to apoptosis, we evaluated Pi-induced death by a number of different methods and compared the results to those induced by the apoptogen, staurosporine. Analysis of the death process indicated that cartilage cells shared many of the common biological features of the apoptotic process. Thus, there was DNA fragmentation, terminal deoxynucleotidyl transferase (TUNEL) labeling, an increase in cells in the sub-G1 fraction of the cell cycle, and morphological evidence of apoptosis. To explore the specificity of the Pi effect, the experiment was repeated using embryonic sternal cephalic and caudal chondrocytes, cells that are at an earlier developmental stage than the terminally differentiated tibial cells. We noted that these cells remained vital despite a major increase in the medium Pi content. Results of this study suggest that Pi is a stage-specific inducer of apoptosis in maturing chondrocytes and that this role may be linked to chondrocyte maturation and mineralization of the extracellular matrix.  相似文献   

7.
The process of cell death of oocytes was studied in atretic ovarian follicles of rats aged from 1 to 28 days using light and electron microscope and cytochemical methods. These methods were TUNEL procedure for DNA breaks, active caspase-3 and lysosome-associated membrane protein 1 (LAMP-1) immunolocalizations. The structural features of the process of oocyte death are mainly characterized by the presence of abundant clear vacuoles and autophagosomes, as well as by the absence of large clumps of compact chromatin associated to the nuclear envelope and apoptotic bodies. These features are common to oocytes in all types of follicles studied. Cytochemical features consisting in positive reactions to TUNEL method, active caspase-3 and LAMP-1 immunolocalizations, are common to the cell death of oocytes in all types of follicles. Particular features of the process of cell death of oocytes are found in different types of follicles. Two morphological patterns of cell death occur in pre-follicular oocytes of the new born and in primordial follicles in 1 to 5 days old rats. One is distinguished by clear nucleoli and moderate compaction of chromatin in clumps frequently resembling meiotic bivalents. The second pattern is characterized by nucleolar condensation and by the absence of compact chromatin. The process of cell death of oocytes in antral follicles is characterized by ribonucleoprotein ribbon-like cytoplasmic structures, pseudo-segmentation, and loss of contact with granulosa cells.  相似文献   

8.
Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.  相似文献   

9.
Retinoids have long been known to influence skeletogenesis but the specific roles played by these effectors and their nuclear receptors remain unclear. Thus, it is not known whether endogenous retinoids are present in developing skeletal elements, whether expression of the retinoic acid receptor (RAR) genes alpha, beta, and gamma changes during chondrocyte maturation, or how interference with retinoid signaling affects skeletogenesis. We found that immature chondrocytes present in stage 27 (Day 5.5) chick embryo humerus exhibited low and diffuse expression of RARalpha and gamma, while RARbeta expression was strong in perichondrium. Emergence of hypertrophic chondrocytes in Day 8-10 embryo limbs was accompanied by a marked and selective up-regulation of RARgamma gene expression. The RARgamma-rich type X collagen-expressing hypertrophic chondrocytes lay below metaphyseal prehypertrophic chondrocytes expressing Indian hedgehog (Ihh) and were followed by mineralizing chondrocytes undergoing endochondral ossification. Bioassays revealed that cartilaginous elements in Day 5.5, 8.5, and 10 chick embryo limbs all contained endogenous retinoids; strikingly, the perichondrial tissues surrounding the cartilages contained very large amounts of retinoids. Implantation of beads filled with retinoid antagonist Ro 41-5253 or AGN 193109 near the humeral anlagens in stage 21 (Day 3.5) or stage 27 chick embryos severely affected humerus development. In comparison to their normal counterparts, antagonist-treated humeri in Day 8.5-10 chick embryos were significantly shorter and abnormally bent; their diaphyseal chondrocytes had remained prehypertrophic Ihh-expressing cells, did not express RARgamma, and were not undergoing endochondral ossification. Interestingly, formation of an intramembranous bony collar around the diaphysis was not affected by antagonist treatment. Using chondrocyte cultures, we found that the antagonists effectively interfered with the ability of all-trans-retinoic acid to induce terminal cell maturation. The results provide clear evidence that retinoid-dependent and RAR-mediated mechanisms are required for completion of the chondrocyte maturation process and endochondral ossification in the developing limb. These mechanisms may be positively influenced by cooperative interactions between the chondrocytes and their retinoid-rich perichondrial tissues.  相似文献   

10.
During the process of endochondral ossification chondrocytes progress through stages of terminal differentiation culminating in apoptotic death. We have developed a serum-free suspension culture that allows terminal differentiation and facilitates the investigation of factors affecting chondrocyte apoptosis. We have found that chondrocytes not committed to terminal differentiation, i.e., those from the caudal region of chick embryo sterna, a region that remains cartilaginous for some months after the chick hatches, maintained high viability in serum-free suspension culture. A strong dependence of viability on culture density and sensitivity to induction of apoptosis with the protein kinase inhibitor, staurosporine, was consistent with the proposal that these chondrocytes, like nearly all cells, require intercellular communication for survival. Chondrocytes that were committed to terminal differentiation, i.e., those from the cephalic region of chick embryo sterna, a region that is replaced by bone before the chick hatches, expressed the hypertrophic phenotype but maintained their viability in culture for only approximately 6 days. Subsequent cell death was very consistent between cultures and shown to occur by an apoptotic process by analysis of DNA fragmentation and cell morphology. Short-term viability of hypertrophic chondrocytes was independent of culture density and relatively resistant to treatment with staurosporine. Induction of the hypertrophic phenotype in immature chondrocytes committed them to cell death and prevention of expression of the hypertrophic phenotype prevented cell death. We conclude that commitment of chondrocytes to terminal differentiation is associated with a commitment to apoptosis and apoptosis of hypertrophic chondrocytes in growth cartilage does not require initiation by external signals.  相似文献   

11.
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green–yellow, yellow–orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.  相似文献   

12.
The effects of chromatin compaction on X-radiation-induced cell killing and the induction and repair of DNA damage were studied in Chinese hamster ovary cells deprived of isoleucine for 24 h (Ile- cells) and compared to untreated controls. The results show that chromatin is decondensed in Ile- cells; i.e., in Ile- cells the nuclear area occupied by heterochromatin decreased 30-fold over control cells, both the rate and limit of micrococcal nuclease digestion were greater for Ile- cells, and 14.2% more propidium iodide was intercalated into the Ile- cell chromatin. The X-ray-induced cytotoxicity did not change in Ile- cells versus the control cells (D0 = 0.99 Gy) nor did the X-ray-induced DNA damage. However, the repair of DNA damage produced by 10 Gy proceeded with different kinetics in Ile- cells when compared to the controls. The initial rate of DNA damage repair was slower in Ile- cells by a factor of 2 compared to controls (the time required to rejoin 50% of the lesions was 6 versus 3 min, respectively). However, after 2 h of repair no DNA damage was detected in either group. Therefore, we conclude that this decondensation of chromatin, per se, does not directly modify the induction or ultimate repair of DNA damage by X radiation or cell clonogenicity and thus does not appear to be a primary factor in cell survival.  相似文献   

13.
Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis “in vivo” more often display peculiar features that correspond to a distinct process of programmed cell death termed “chondroptosis”. Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the “chondroptotic” phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and “chondroptotic” cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.  相似文献   

14.
Autologous cell transplantation is a promising approach for cartilage repair, but the expansion of chondrocytes in a monolayer, a common approach to amplifying the cell number, inevitably leads to cell de-differentiation. To explore whether porous alginate sponges could be utilized for chondrocyte expansion and investigate the effects of seeding densities, the porcine chondrocytes were seeded to porous alginate sponges at low (5 x 10(5) cells per 40 sponges), medium (5 x 10(6) cells per 40 sponges), or high (2 x 10(7) cells per 40 sponges) density. After 4-week perfusion culture, all three groups resulted in chondrocyte proliferation, maintenance of chondrocytic gene (collagen II, Sox 9 and aggrecan) expression, and formation of cell clusters resembling cartilaginous tissues. The higher the seeding density, the higher the final cell density and GAGs production and, accordingly, the larger the cell clusters. Strikingly, the cumulative expansion ratios achieved by the low-density group ( approximately 150-fold) significantly exceeded those achieved by the medium (approximately 21-fold) and high (approximately 4.7-fold) density groups, as well as those achieved using other scaffolds. In conclusion, seeding chondrocytes to the alginate sponges at a low density, combined with perfusion culture, represents a drastic improvement in expanding autologous chondrocytes.  相似文献   

15.
Single cells from enzymatically dissociated chick embryo tibiae have been cloned and expanded in fresh or conditioned culture media. A cloning efficiency of approximately 13% was obtained using medium conditioned by dedifferentiated chondrocytes. A cloning efficiency of only 1.4% was obtained when conditioned medium from hypertrophic chondrocytes was used, and efficiencies of essentially 0 were found with fresh medium or medium conditioned by J2-3T3 mouse fibroblasts. Cell clones were selected by morphological criteria and clones showing a dedifferentiated phenotype (fibroblast-like) were further characterized. Out of 38 clones analyzed, 17 were able to differentiate to the hypertrophic chondrocyte stage and reconstitute hypertrophic cartilage when placed in the appropriate culture conditions. Cells from these clones expressed the typical markers of chondrocyte differentiation, i.e., type II and type X collagens. Clones not undergoing differentiation continued to express only type I collagen. Hypertrophic chondrocytes from differentiating clones were analyzed at the single cell level by immunofluorescence; all the cells were positive for type X collagen, while approximately 50% of them showed positivity for type II collagen.  相似文献   

16.
Chondrocyte survival is closely linked to cartilage integrity, and forms of chondrocyte apoptotic death can contribute to cartilage degeneration in articular diseases. Since growing evidence also implicates polyamines in the control of cell death, we have been investigating the role of polyamine metabolism in chondrocyte survival and apoptosis. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, inhibited polyamine biosynthesis and induced polyamine catabolism, thus rapidly depleting all main polyamines. DENSPM did not increase significantly caspase activity, but provoked a late cell death associated to DNA fragmentation. A short treatment with DENSPM did not reduce cell viability when given alone, but enhanced caspase-3 and -9 activation in chondrocytes exposed to tumor necrosis factor-alpha (TNF) and cycloheximide (CHX). A longer treatment with DENSPM however reduced caspase response to TNF plus CHX. Depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not cause cell death and contrasted apoptosis by decreasing caspase activities. In conclusion, following DENSPM treatment, C-28/I2 chondrocytes are initially sensitized to caspase 9-dependent apoptosis in the presence of TNF and CHX and may eventually undergo a late and mainly caspase-independent cell death in the absence of other stimuli. Moreover, these results indicate that a reduction of polyamine levels not only leads to inhibition of cell proliferation, but also of caspase-mediated pathways of chondrocyte apoptosis.  相似文献   

17.
We found dramatic changes in leukemia U937 cells treated with 5′-deoxy-5′-methylthioadenosine (MTA), a potent inhibitor of protein carboxylmethyltransferase (protein methylase II). Initiation of cell death was observed by 1 day after MTA treatment, and it was induced in a dose- and time-dependent manner. However, cell viability measured by trypan blue exclusion was not consistent with the actual percentage of cell death. These results indirectly indicated that the type of cell death is apoptosis rather than necrosis. Nuclear fragmentation and DNA condensation of MTA-treated U937 cells were analyzed by both fluorescent and electron microscopy. MTA-treated cells first began to arrest in the M phase of the cell cycle, and they then exhibited a mitotic-like nuclear fragmentation process with partially membraneless chromatin. Furthermore, agarose gel electrophoresis of DNA extracted from cells treated with MTA showed DNA laddering with production of fragments of approximately 200 bp multiples. These studies indicated that cell death induced by MTA has the characteristics of apoptosis, although nuclear fragmentation is atypical. It seems likely that the process of apoptosis in U937 cells induced by MTA correlates with incomplete assembly of the nuclear envelope, since MTA itself could inhibit the carboxylmethylation of nuclear lamin B and delayed incorporation of lamin B into the nuclear envelope.  相似文献   

18.
BACKGROUND: We have previously demonstrated highly efficient baculovirus transduction of primary rat articular chondrocytes, thus implicating the possible applications of baculovirus in gene-based cartilage tissue engineering. However, baculovirus-mediated gene expression in the chondrocytes is transient. METHODS: In this study, we attempted to prolong the expression by supertransduction, but uncovered that after long-term culture the chondrocytes became more refractory to baculovirus transduction. Therefore, the correlation between baculovirus-mediated enhanced green fluorescent protein (EGFP) expression and cell cycle was investigated by comparing the cycling chondrocytes and chondrocytes rich in quiescent cells, in terms of EGFP expression, virus uptake, cell cycle distribution, nuclear import and methylation of viral DNA. RESULTS: We demonstrated, for the first time, that baculovirus-mediated transduction of chondrocytes is correlated with the cell cycle. The chondrocytes predominantly in G2/M phase were approximately twice as efficient in EGFP expression as the cycling cells, while the cells in S and G1 phases expressed EGFP as efficiently as the cycling cells. Notably, the chondrocyte populations rich in quiescent cells resulted in efficient virus uptake, but less effective nuclear transport of baculoviral DNA and higher degree of methylation, and hence poorer transgene expression. CONCLUSIONS: These findings unravel the practical limitations when employing baculovirus in cartilage tissue engineering. The implications and possible solutions are discussed.  相似文献   

19.
Fibroblast growth factor 2 (FGF-2) is produced as CUG-initiated, 22-34 kDa or AUG-initiated 18 kDa isoforms (hi- and lo-FGF-2, respectively), with potentially distinct functions. We report that expression of hi-FGF-2 in HEK293 cells elicited chromatin compaction preceding cell death with apoptotic features. Nuclear localization of the intact protein was required as expression of a non-nuclear hi-FGF-2 mutant failed to elicit chromatin compaction. Equally ineffective, despite nuclear localization, was the over-expression of the 18 kDa core sequence (lo-FGF-2). Chromatin compaction by hi-FGF-2 was accompanied by increased cytosolic cytochrome C, and was attenuated either by over-expression of Bcl-2 or by a peptide inhibitor of the pro-apoptotic protein Bax. In addition hi-FGF-2 elicited sustained activation of total and nuclear extracellular signal regulated kinase (ERK1/2) by an intracrine route, as it was not prevented by neutralizing anti-FGF-2 antibodies. Inhibition of the ERK1/2 activating pathway by dominant negative upstream activating kinase, or by PD 98059, prevented chromatin compaction by hi-FGF-2. ERK1/2 activation was not affected by the Bax-inhibiting peptide suggesting that it occurred upstream of mitochondrial involvement. We conclude that the hi-FGF-2-induced chromatin compaction and cell death requires its nuclear localization, intracrine ERK1/2 activation and mitochondrial engagement.  相似文献   

20.
In present study,we studied the effect of all-trans retinoic acid(ATRA)and dimethylsulfoxide(DMSO)on the induction of apoptosis in HL-60 cell line.Based on morphological changes by Hochest 33342 staining and identification of internuclesomal NDA celeavage by gel electrophoresis,we observed aberrant nuclear chromatin condensation and ladder-like pattern of DNA degradation. Using Flow Cytometric method.We found sub-G1 peak in RA-treated HL-60 cells starting 5 to 6d after the initiation of the treatment However,Such an obvious apoptotic peak was not identified in DMSO-differentiated cells.Combining the research accomplished before.our study approves further that apoptosis could be a common mode of death of terminally differentiated HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号