首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of long-chain fatty acids to bovine serum albumin   总被引:32,自引:0,他引:32  
We have studied the binding of long-chain free fatty acids (FFA) to crystalline bovine serum albumin (BSA) that had been extracted with charcoal to remove endogenous fatty acids. The data were analyzed in terms of a model consisting of six high-energy binding sites and a large number of weak binding sites. The high-energy sites were resolved into two distinct classes, each containing three sites. At 37 degrees C and pH 7.4, k'(1) (the apparent association constant of a class of binding sites) was about 10(6) m(-1) for binding to the three primary sites, and k'(2) was about 10(5) m(-1) for binding to the three secondary sites. The number of weak (tertiary) sites was estimated to be 63 with a k'(3) of 10(3) m(-1). In general, palmitate and palmitoleate were bound more tightly than oleate, linoleate, stearate, or myristate, and much more tightly than laurate. The association of palmitate with human and rabbit albumin also was analyzed in terms of this model. Palmitate was bound less firmly by human or rabbit albumin than by BSA. Palmitate binding to BSA was dependent upon the pH and temperature of the incubation medium. Long-chain hydrocarbons that did not contain a free carboxyl group (methyl palmitate, cetyl alcohol, and hexadecane) were bound to a limited extent and weakly. The presence of positively charged protein sites and native protein tertiary structure were required for maximal binding of palmitate to BSA. Of nine other proteins tested, only -lactoglobulin exhibited a significant capacity to bind palmitate.  相似文献   

2.
Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperature, whereas binding of the following molecules seems to proceed independently of temperature. Binding data were analyzed according to the general binding equation yielding several sets of acceptable binding constants within a probability limit of 0.75. From the temperature dependence of the first step constant, it was possible to calculate values for the changes in enthalpy and entropy during the initial binding step. For the medium-chain fatty acids, laurate and myristate, binding of the first molecule to albumin appeared to be enthalpic, with a tendency to an increasing contribution of entropy to binding energy with increasing chain length of the fatty acid.  相似文献   

3.
Human serum albumin is the most abundant protein in the circulatory system, and one of its principal functions is to transport fatty acids. Binding of octanoate, decanoate, laurate and myristate was studied by a rate-of-dialysis technique. The primary association constants increased, but not linearly, with chain length. The number of high-affinity sites also increased with chain length; octanoate and decanoate bind to one such site, whereas laurate and myristate most probably bind to two sites. Albumin is composed of three homologous helical domains (I-III), which can be subdivided into two subdomains (A and B). For getting information about the positions of the high-affinity sites we produced 13 recombinant isoforms mutated in four different subdomains. Results obtained with these albumins are in accordance with the following model: octanoate and decanoate bind to a single site in subdomain IIIA, laurate binds to sites in subdomains IIIA and IIIB, whereas myristate binds in subdomains IB and IIIB. The results also showed that primary fatty acid binding is sensitive to amino acid substitutions in other parts of the protein. This is in contrast to the effect of amino acid substitutions of genetic albumin variants (alloalbumins). Usually these substitutions, which are situated at the surface of the protein, have no effect on fatty acid binding. Binding of fatty acid anions to different high-affinity sites and the sensitivity of these sites to amino acid substitutions elsewhere in the protein (and perhaps also to other types of modifications) are important factors that could effect simultaneous binding of other ligands, e.g. in patients treated with albumin-binding drugs.  相似文献   

4.
The interactions of fatty acids with porcine and bovine β-lactoglobulins were measured using tryptophan fluorescence enhancement. In the case of bovine β-lactoglobulin, the apparent binding constants for most of the saturated and unsaturated fatty acids were in the range of 10?7 M at neutralpH. Bovine β-lactoglobulin displays only one high affinity binding site for palmitate with an apparent dissociation constant of 1·10?7 M. The strength of the binding was decreasing in the following way: palmitate > stearate > myristate > arachidate > laurate. Caprylic and capric acids are not bound at all. The affinity of β-lactoglobulin for palmitate decreased as thepH of the incubation medium was lowered and BLG/palmitate complex was not observed atpH's lower than 4.5. Surprisingly, chemically modified bovine β-lactoglobulin and porcine β-lactoglobulin did not bind fatty acids in the applied conditions.  相似文献   

5.
The synthesis of fatty acids de novo from acetate and the elongation of exogenous satuated fatty acids (C12-C18) by the psychrophilic bacterium Micrococcus cryophilus (A.T.C.C. 15174) grown at 1 or 20 degrees C was investigated. M. cryophilus normally contains only C16 and C18 acyl chains in its phospholipids, and the C18/C16 ratio is altered by changes in growth temperature. The bacterium was shown to regulate strictly its phospholipid acyl chain length and to be capable of directly elongating myristate and palmitate, and possibly laurate, to a mixture of C16 and C18 acyl chains. Retroconversion of stearate into palmitate also occurred. Fatty acid elongation could be distinguished from fatty acid synthesis de novo by the greater sensitivity of fatty acid elongation to inhibition by NaAsO2 under conditions when the supply of ATP and reduced nicotinamide nucleotides was not limiting. It is suggested that phospholipid acyl chain length may be controlled by a membrane-bound elongase enzyme, which interconverts C16 and C18 fatty acids via a C14 intermediate; the activity of the enzyme could be regulated by membrane lipid fluidity.  相似文献   

6.
Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture, whereas warfarin was not bound at all to the low-affinity component.  相似文献   

7.
Binding of Phenol Red to human serum albumin at pH 7.0 was studied by ultrafiltration (n1 = 1, K1 = 3.9 X 1-(4) M-1, n2 = 5, K2 = 9.6 X 10(2) M-1). The presence of 1 mol of octanoate or decanoate per mol of albumin caused a decrease in dye binding (dye/protein molar ratio 1:1), which, in contrast with additional fatty acid, was very pronounced: 1-8 mol of palmitate or stearate resulted in a small, and apparently linear, displacement of Phenol Red. The displacement effect of 1-5 mol of oleate, linoleate or linolenate per mol of albumin was comparable with that of the equimolar concentrations of palmitate or stearate. A higher molar ratios the unsaturated acids caused a drastic decrease in dye binding. The different Phenol Red-displacement effects of low molar ratios of medium-chain and long-chain fatty acids indicate that these acids have different high-affinity binding sites. In accordance with this proposal, low concentrations of stearate had only a small effect on the Phenol Red-displacement effect of octanoate. Phenol Red-binding curves in the presence of 1 mol of octanoate, 8 mol of stearate and 6 or 7 mol of linolenate per mol of albumin respectively indicated that the dye and the fatty acids do not complete for a common primary binding site. In contrast, a secondary Phenol Red-binding site could be identical with the primary octanoate-binding site. Furthermore, the primary Phenol Red-binding site could be the same as a secondary linolenate-binding site. Assignment of the different primary binding sites for Phenol Red and for medium-chain and long-chain fatty acids to a model of the secondary structure of albumin is attempted.  相似文献   

8.
Various fatty acids were studied in vitro as inhibitors of pure hog kidney D-amino acid oxidase by means of a spectrophotometric peroxidase-coupling method using D-methionine as a substrate. All the fatty acids tested behaved as substrate-competitive inhibitors of the enzyme. The affinity of the saturated aliphatic acids for D-amino acid oxidase decreased from pentanoate (5:0; Ki = 220 microM) to laurate (12:0; Ki = 675 microM), then rose to a maximum with stearate (18:0; Ki = 36 microM), suggesting the presence of a site in the active center of the enzyme that accepts long-chain fatty acid alkyl groups. Unsaturation did not further increase the affinity of the fatty acid for this binding site.  相似文献   

9.
1. Mammary glands of lactating goats were perfused for 12.5-15hr. with heparinized whole blood and infused with a substrate mixture of glucose, acetate and amino acids (and sometimes chylomicra) containing either [1-(14)C]acetate, d(-)-beta-hydroxy[1-(14)C]butyrate or [U-(14)C]stearate. 2. There was a substantial net uptake of acetate by the glands and transfer of radioactivity into milk fat. Acetate was extensively utilized for the synthesis of milk fatty acids of chain length up to C(14) and to a smaller extent for the synthesis of palmitate. 3. There was a small and variable net uptake of stearate and beta-hydroxybutyrate and negligible oxidation of these substrates. However, tissue uptake was demonstrated by a substantial fall in specific radioactivity across the glands and an extensive transfer of radioactivity into milk fatty acids. 4. With beta-hydroxybutyrate the labelling of milk fat was very similar to that with acetate, but the distribution of radioactivity suggested a cleavage into C(2) fragments of about 40%. 5. Labelled stearate gave rise to highly labelled stearate and oleate in the milk fat. Small amounts of radioactivity were detected in stearate of plasma triglycerides and oleate of plasma free fatty acids. 6. In experiments where there was a decline in milk-fat secretion late in perfusion, the milk fatty acids showed a marked decline in the proportion of stearate and oleate and a rise in the proportion of myristate and palmitate. This did not occur in experiments where milk-fat secretion was maintained at a higher level. 7. The present results confirm that there is a large pool of long-chain fatty acids in mammary tissue that can act as an endogenous source of these substrates.  相似文献   

10.
We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls. Here we demonstrate that laurate (12C), palmitate (16C) and stearate (18C) could activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, whereas there was no activation with glucose-O-ω-laurate (12C), glucose-O-ω-palmitate (16C), glucose-O-ω-stearate (18C), glucose-O-ω-arachidate (20C) or arachidate alone. We conclude that non-flippable fatty acids cannot activate uncoupling protein 1 irrespective of chain length. Our data further undermine the cofactor activation model of uncoupling protein 1 function but are compatible with the model that uncoupling protein 1 functions by flipping long-chain fatty acid anions.  相似文献   

11.
Escherichia coli grows on long-chain fatty acids after a distinct lag phase. Cells, preadapted to palmitate, grow immediately on fatty acids, indicating that fatty acid oxidation in this bacterium is an inducible system. This hypothesis is supported by the fact that cells grown on palmitate oxidize fatty acids at rates 7 times faster than cells grown on amino acids and 60 times faster than cells grown on a combined medium of glucose and amino acids. The inhibitory effect of glucose may be explained in terms of catabolite repression. The activities of the five key enzymes of beta-oxidation [palmityl-coenzyme A (CoA) synthetase, acyl-CoA dehydrogenase, enoyl-CoA hydrase, beta-hydroxyacyl-CoA dehydrogenase, and thiolase] all vary coordinately over a wide range of activity, indicating that they are all under unit control. The ability of a fatty acid to induce the enzymes of beta-oxidation and support-growth is a function of its chain length. Fatty acids of carbon chain lengths of C(14) and longer induce the enzymes of fatty acid oxidation and readily support growth, whereas decanoate and laurate do not induce the enzymes of fatty acid oxidation and only support limited growth of palmitate-induced cells. Two mutants, D-1 and D-3, which grow on decanoate and laurate were isolated and were found to contain constitutive levels of the beta-oxidation enzymes. Short-chain fatty acids (相似文献   

12.
Chopped tissue from developing soybean cotyledons incorporated [1-14C]acetate into palmitate, stearate, oleate, and linoleate, but with germinating cotyledons much less [1-14C]acetate was incorporated and the principal labeled products were palmitate, stearate, and oleate. When supernatant fractions from developing cotyledons were incubated with [1-14C]acetate or [2-14C]malonate the principal labeled products were palmitate and stearate. Supernatant fractions from germinating seed incorporated [2-14C]malonate into palmitate and also into short chain fatty acids including decanoate, laurate, and myristate. Supernatants from developing cotyledons required acyl carrier protein (ACP), ATP, CoA, and reduced pyridine nucleotides for maximal rates of incorporation of either [1-14C]acetate or [2-14C]malonate into palmitate and stearate. The de novo fatty acid synthetase which converts acetyl- and malonyl-ACP's to palmityl ACP was active in supernatant fractions from both young and old developing cotyledons. The elongation system, converting palmityl ACP to stearyl ACP, was more active in supernatants from younger than from older developing cotyledons. In experiments with chopped tissue the elongation system appeared equally active throughout the development process. These results are consistent with the view that the de novo and elongation systems are separate entities and that the elongation system in older cotyledons is less stable to the methods used to prepare supernatant fractions.  相似文献   

13.
14.
Quantitative aspects of the binding of free fatty acid to human erythrocytes were studied by measuring the distribution of various amounts of [1-(14)C]lauric acid between washed human erythrocytes and defatted human plasma albumin. Incubations were done at 37 degrees C in an isotonic phosphate-buffered salt solution. Laurate uptake approached a steady state value within 1 hr of incubation over the range of laurate-albumin molar ratios that were tested. Uptake was due primarily to a transfer of laurate from albumin to the cell, not to incorporation of the intact laurate-albumin complex. The fatty acid binding sites of the erythrocyte are located predominantly on or within the cell membrane. The binding model which best fitted the laurate uptake data consisted of two classes of erythrocyte binding sites. This model contains a small number of sites, 2.0 x 10(-13) moles/10(6) cells, that have an average apparent association constant of 1.8 x 10(6) m(-1) for laurate. Thus, the average strength of these sites is of the same order of magnitude as the stronger laurate binding sites of albumin. The binding model also contains a relatively large number of weaker fatty acid binding sites, 1.3 x 10(-11) moles/10(6) cells, that have an average apparent association constant of 1.3 x 10(4) m(-1) for laurate. These sites are too weak to bind appreciable amounts of laurate unless the fatty acid-albumin molar ratio is elevated.  相似文献   

15.
Affinity labeling with palmitic acid was used to identify long chain fatty acid-binding sites of bovine serum albumin. [1-14C]Palmitic acid was activated by esterification with N-ethyl-5-phenyl-isoxazolium-3'-sulfonate (Woodward's Reagent K). The product was purified by chromatography and shown to compete with unesterified fatty acids for binding sites on bovine serum albumin. Activated [14C]palmitic acid coupled covalently to albumin producing [14C]palmitoyl-albumins containing from 0.12 to a maximum of 6.9 mol of attached label per mol of albumin. The presence of the covalently attached affinity label depressed binding of other long chain fatty acids to albumin. Albumin carrying 1 eq. of [14C]palmitate was cleaved using cyanogen bromide, pepsin, and trypsin. Radioactive peptides were isolated by high pressure liquid chromatography. Three peptides accounted for greater than 90% of the label. Residues labeled with [14C]palmitate were identified as Lys-116, Lys-349 and Lys-473, and the relative distribution of label was 10, 45, and 45% respectively, consistent with the presence of two strong binding sites in the COOH-terminal half of albumin and a somewhat weaker site in the NH2-terminal half.  相似文献   

16.
Detergents including fatty acid salts act as surface-active agents and thus possibly damage the plasma membrane structures of aquatic organisms. Therefore, when excess, the house-used and industrial outflows of such detergents into aquatic environments may have considerable impacts on the ecosystem. In this study, we propose the use of green paramecia (Paramecium bursaria) for assessing the acute toxicity of eight fatty acid salts (Na and K salts of oleate, palmitate, laurate and myristate) under various water conditions. The Paramecium in the stationary phase were used for a toxicity assay carried out on 12-well microplates and the median lethal concentration (LC50) was determined for each fatty acid salt. In the low mineral culture medium prepared with ultra-pure water, the LC50 for each fatty acid ranged from 5.8 to 144 ppm (w/v). The toxic levels of fatty acid salts differed in the following order: laurate, myristate > or = oleate, palmitate. The toxic levels of oleate and palmitate salts were ca. 10-fold lower than those of laurate and myristate salts. When river water and local tap water instead of ultra-pure water were used for culturing, the toxic levels of all fatty acid salts were drastically lowered compared to the low mineral condition by 30- to 100-fold (198-660 ppm, w/v). Similar detoxification effect was observed when Ca or Mg was added to the low mineral culture media, indicating that the toxicity of fatty acid salts can be notably lowered as the mineral content increases. As we demonstrated that toxicities of fatty acid salts can be lowered in river water and tap water compared to the low mineral condition, some chemical substances behave differently in the different water conditions. Therefore, the use of natural waters reflecting the real environmental conditions in further collection of data on the ecotoxicity impacts of variety of chemicals is highly encouraged.  相似文献   

17.
18.
Fatty acid binding and oxidation kinetics for wild type P450BM3 (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50 mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than kcat. The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450BM3 could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration.  相似文献   

19.
Murine fibroblasts, LM cells, were cultured in suspension with laurate (12:0), myristate (14:0), palmitate (16:0), palmitoleate (16:1), or palmitate + palmitoleate (16:0 + 16:1) bound to fatty acid-free bovine serum albumin. Supplementation with saturated fatty acids decreased the ratio of unsaturated/saturated fatty acids in membrane phospholipids as much as 3.4-fold (palmitate-enriched cells). Concomitantly fluorescence polarization, absorption-corrected fluorescence, and relative fluorescence efficiency of the fluorescence probe molecule, β-parinaric acid, increased 1.5-, 2.9-, and 1.8-fold, respectively, in the membrane phospholipids. Unsaturated fatty acid (palmitoleate) increased the unsaturated/saturated fatty acid ratio by 20% but did not significantly alter the fluorescence parameters. When the cells were fed mixtures of palmitate and palmitoleate, the unsaturated/saturated fatty acid ratio of the membrane phospholipids and the above fluorescence parameters had values intermediate between those if each fatty acid had been fed separately. All fatty acid supplements caused a loss of two characteristic temperatures in Arrhenius plots of relative fluorescence efficiency. However, no shifts or appearance of new characteristic temperatures occurred. The break points at approximately 42, 37, and 22 °C were essentially un-altered. The data were consistent with the possibility that LM cells were unable to maintain constant fluidity, as indicated by fluorescence polarization, when supplemented with different fatty acids. A good correlation could be made between the phospholipid unsaturated/ saturated fatty ratio, the fluorescence polarization, and the toxicity elicited by different fatty acid supplements.  相似文献   

20.
Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C(14). The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C(14) and methyl palmitate-1-C(14). This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号