首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.  相似文献   

2.
Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3′-OH and 5′-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3′-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3′-S-phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3′-S-phosphorothiolate-modified ptRNA carrying a 7 nt 5′-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5′-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn2+ or Cd2+. To suppress aberrant cleavage, we also constructed a 3′-S-phosphorothiolate-modified ptRNA with a 1 nt 5′-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3′-S-phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.  相似文献   

3.
Cleavage by the endoribonuclease RNase P requires the presence of divalent metal ions, of which Mg2+ promotes most efficient cleavage. Here we have studied the importance of there being Mg2+ in RNase P RNA catalysis. It is demonstrated that addition of Mn2+ resulted in a shift of the cleavage site and that this shift was associated with a change in the kinetic constants, in particular kcat. Our data further suggest that the influence of Mn2+ on cleavage site recognition depends on the -1/+73 base-pair in the substrate and the +73/294 base-pair in the RNase P RNA-substrate (RS)-complex. Based on our data we suggest that cleavage in the presence of Mg2+ as the only divalent metal ion proceeds through an intermediate which involves the establishment of the +73/294 base-pair in the RS-complex. By contrast, addition of Mn2+ favours an alternative pathway which results in a shift of the cleavage site. We also studied the influence of Mn2+ on cleavage site recognition and the kinetics of cleavage using various RNase P RNA derivatives carrying substitutions in the region of RNase P RNA that base-pair with the 3' terminal end of the substrate. From these results we conclude that a change in the structure of this RNase P RNA domain influences the involvement of a divalent metal ion(s) in the chemistry of cleavage.  相似文献   

4.
RNase P ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural ptRNA substrate. When covalently linked with a guide sequence, the ribozyme can function as a sequence-specific endonuclease and cleave any target RNA sequences that base pair with the guide sequence. Using a site-directed ultraviolet (UV) cross-linking approach, we have mapped the regions of the ribozyme that are in close proximity to a substrate that contains the mRNA sequence encoding thymidine kinase of human herpes simplex virus 1. Our data suggest that the cleavage site of the mRNA substrate is positioned at the same regions of the ribozyme that bind to the cleavage site of a ptRNA. The mRNA-binding domains include regions that interact with the acceptor stem and T-stem and in addition, regions that are unique and not in close contact with a ptRNA. Identification of the mRNA-binding site provides a foundation to study how RNase P ribozymes achieve their sequence specificity and facilitates the development of gene-targeting ribozymes.  相似文献   

5.
Seven sequence-specific ribozymes (M1GS RNAs) derived in vitro from the catalytic RNA subunit of Escherichia coli RNase P and targeting the mRNAs transcribed by the UL54 gene encoding the DNA polymerase of human cytomegalovirus were screened from 11 ribozymes that were designed based on four rules: (1) the NCCA-3′ terminal must be unpaired with the substrate; (2) the guide sequence (GS) must be at least 12 nt in length; (3) the eighth nucleotide must be U, counting from the site-1; and (4) around the cleavage site, the sites -1/ 1/ 2 must be U/G/C or C/G/C. Further investigation of the factors affecting the cleavage effect and the optimal ratio for M1GS/substrate was carried out. It was determined that the optimal ratio for M1GS/substrate was 2:1 and too much M1GS led to substrate degrading. As indicated above, several M1GS that cleaved HCMV UL54 RNA segments in vitro were successfully designed and constructed.Our studies support the use of ribozyme M1GS as antisense molecules to silence HCMV mRNA in vitro, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.  相似文献   

6.
RNase P mediated cleavage of the tRNA(His) precursor does not rely on the formation of the "+73/294 interaction" to give the correct cleavage product, i.e. cleavage at -1, while other tRNA precursors that are cleaved at the canonical site +1 do. A previous model, here referred to as the "2'OH-model", predicts that the 2'OH at the canonical cleavage site would affect cleavage at -1. Here we used model RNA hairpin substrates mimicking the structural architecture of the tRNA(His) precursor cleavage site to investigate the role of 2'OH with respect to ground state binding and rate of cleavage in the presence and absence of the +73/294 interaction. Our data emphasize the importance of the 2'OH in the immediate vicinity of the scissile bond. Moreover, introduction of 2'H at the cleavage site did not affect cleavage at an alternative cleavage site to any significant extent. Our findings are therefore inconsistent with the 2'OH model. We favor a model where the 2'OH at the cleavage site influence Mg2+ binding in its vicinity, however we do not exclude the possibility that the 2'OH at the cleavage site interacts with RNase P RNA. Studying the importance of the 2'OH at different cleavage sites also indicated a higher dependence on the 2'OH at the cleavage site in the absence of the +73/294 interaction than in its presence. Finally, we provide data suggesting that N3 of U at position -1 in the substrate is most likely not involved in an interaction with RNase P RNA.  相似文献   

7.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

8.
Nuclear Dictyostelium discoideum RNase P was subjected to vigorous deproteinization procedures. After treatment with proteinase K followed by phenol extraction of samples containing D. discoideum RNase P activity, a new enzymatic activity was recovered. The proteinase K/phenol/SDS treated enzyme cleaves Schizossacharomyces pombe tRNAser (supS1), D. discoideum tRNASer and tRNALeu precursors several nucleotides upstream of the cleavage site of RNase P, liberating products with 5'-hydroxyl ends. This activity seems to be associated with one or two RNA molecules copurifying with D. discoideum RNase P activity as judged by its inhibition in the presence of micrococcal nuclease, which is in contrast to its resistance to proteinase K/phenol/SDS treatment.  相似文献   

9.
2',5'-Linked oligoadenylates (2-5A) are involved in the antiviral action of interferon. The 2-5A binds and activates 2-5A dependent RNase (RNase L), which degrades viral mRNA, resulting in the inhibition of protein synthesis. 2',5'-Linked phosphorothioate oligoadenylates with an Rp configuration bind to and activate the RNase L. On the other hand, 2',5' phosphorothioate oligoadenylate with an Sp configuration weakly binds to the RNase L and is devoid of the RNase L activation ability. Comparative circular dichroism (CD) and NMR studies are carried out to characterize the difference in properties between the two configurations of the 2',5' phosphorothioate oligoadenylates. 2',5' Rp-Phosphorothioate oligoadenylates showed CD spectra similar to those of the corresponding native 2',5' oligoadenylates, while the 2',5' Sp-phosphorothioate oligoadenylates exhibited a weaker CD band compared to the former two, indicating the weaker base-stacking interaction of the 2',5' Sp-phosphorothioate oligoadenylates. The temperature-dependent change in the CD revealed that 2',5' phosphorothioate oligoadenylates showed larger DeltaH(0) and DeltaS(0) values for the thermal transition of the conformation than the corresponding native 2',5' oligoadenylates. The NMR spectral assignment was accomplished by several NMR measuring techniques. The 2'-H of the ribose ring linked to the 2',5' Sp-phosphorothioate showed a higher field chemical shift of the proton NMR than that linked to the corresponding 2',5' Rp-phosphorothioate. 2',5' Rp- and Sp-phosphorothioate oligoadenylates possess a sugar conformation similar to that of the corresponding native 2',5' oligoadenylates.  相似文献   

10.
M Koizumi  E Ohtsuka 《Biochemistry》1991,30(21):5145-5150
Mg2+ is important for the RNase activity of the hammerhead ribozyme. To investigate the binding properties of Mg2+ to the hammerhead ribozyme, cleavage rates and CD spectra for substrates containing inosine or guanosine at the cleavage site were measured. The 2-amino group of this guanosine interfered with the rate of the cleavage reaction and did not affect the amount of Mg2+ bound to the hammerhead RNA. The kinetics and CD spectra for chemically synthesized oligoribonucleotides with a Sp or Rp phosphorothioate diester bond at the cleavage site indicated that 1 mol of Mg2+ binds to the pro-R oxygen of phosphate. The binding constant for Mg2+ was about 10(4) M-1, which represents outer-sphere complexation. The hammerhead ribozyme catalyzes the cleavage reaction via an in-line pathway. This mechanism has been proved for RNA cleavage by RNase A by using a modified oligonucleotide that has an Sp phosphorothionate bond at the cleavage site. From these results, we present the reaction pathway and a model for Mg2+ binding to the hammerhead ribozyme.  相似文献   

11.
For catalysis by bacterial type B RNase P, the importance of a specific interaction with p(recursor)tRNA 3'-CCA termini is yet unclear. We show that mutation of one of the two G residues assumed to interact with 3'-CCA in type B RNase P RNAs inhibits cell growth, but cell viability is at least partially restored at increased RNase P levels due to RNase P protein overexpression. The in vivo defects of the mutant enzymes correlated with an enzyme defect at low Mg(2+) in vitro. For Bacillus subtilis RNase P, an isosteric C259-G(74) bp fully and a C258-G(75) bp slightly rescued catalytic proficiency, demonstrating Watson-Crick base pairing to tRNA 3'-CCA but also emphasizing the importance of the base identity of the 5'-proximal G residue (G258). We infer the defect of the mutant enzymes to primarily lie in the recruitment of catalytically relevant Mg(2+), with a possible contribution from altered RNA folding. Although with reduced efficiency, B. subtilis RNase P is able to cleave CCA-less ptRNAs in vitro and in vivo. We conclude that the observed in vivo defects upon disruption of the CCA interaction are either due to a global deceleration in ptRNA maturation or severe inhibition of 5'-maturation for a ptRNA subset.  相似文献   

12.
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.  相似文献   

13.
14.
RNase MRP and RNase P share a common substrate.   总被引:4,自引:0,他引:4       下载免费PDF全文
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that processes RNA from the mammalian mitochondrial displacement loop containing region. RNase P is a site-specific ribonucleoprotein endoribonuclease that processes pre-tRNAs to generate their mature 5'-ends. A similar structure for the RNase P and RNase MRP RNAs and a common cleavage mechanism for RNase MRP and RNase P enzymes have been proposed. Experiments with protein synthesis antibiotics have shown that both RNase MRP and RNase P are inhibited by puromycin. We also show that E. coli RNase P cleaves the RNase MRP substrate, mouse mitochondrial primer RNA, exactly at a site that is cleaved by RNase MRP.  相似文献   

15.
We analysed the processing of small bipartite model substrates by Escherichia coli and Bacillus subtilis RNase P and corresponding hybrid enzymes. We demonstrate specific trans-cleavage of a model substrate with a 4 bp stem and a 1 nucleotide (nt) 5' flank, representing to date the smallest mimic of a natural RNase P substrate that could be processed in trans at the canonical RNase P cleavage site. Processing efficiencies decreased up to 5000-fold when the 5' flank was shortened from 3 to 1 nt. Reduction of the 5' flank to 1 nt was more deleterious than reducing the stem from 7 to 4 bp, although the 4 bp duplex formed only transiently, in contrast to the stable 7 bp duplex. These results indicate that the crucial contribution of nt -2 in the single-stranded 5' flank to productive interaction is a general feature of A- and B-type bacterial RNase P enzymes. We also showed that an Rp-phosphorothioate modification at nt -2 interferes with processing. Bacterial RNase P holoenzymes are also capable of cleaving single-stranded RNA oligonucleotides as short as 5 nt, yielding RNase P-specific 5'-phosphate and 3'-OH termini, with measured turnover rates of up to 0.7 min-1. All cleavage sites were at least 2 nt away from the 5' and 3' ends of the oligonucleotides. Some cleavage site preferences were observed dependent on the identity of the RNase P RNA subunit.  相似文献   

16.
W Sun  E Jun  A W Nicholson 《Biochemistry》2001,40(49):14976-14984
The ribonuclease III superfamily represents a structurally related group of double-strand (ds) specific endoribonucleases which play key roles in diverse prokaryotic and eukaryotic RNA maturation and degradation pathways. A dsRNA-binding domain (dsRBD) is a conserved feature of the superfamily and is important for substrate recognition. RNase III family members also exhibit a "catalytic" domain, in part defined by a set of highly conserved amino acids, of which at least one (a glutamic acid) is important for cleavage but not for substrate binding. However, it is not known whether the catalytic domain requires the dsRBD for activity. This report shows that a truncated form of Escherichia coli RNase III lacking the dsRBD (RNase III[DeltadsRBD]) can accurately cleave small processing substrates in vitro. Optimal activity of RNase III[DeltadsRBD] is observed at low salt concentrations (<60 mM Na(+)), either in the presence of Mg(2+) (>25 mM) or Mn(2+) ( approximately 5 mM). At 60 mM Na(+) and 5 mM Mn(2+) the catalytic efficiency of RNase III[DeltadsRBD] is similar to that of RNase III at physiological salt concentrations and Mg(2+). In the presence of Mg(2+) RNase III[DeltadsRBD] is less efficient than the wild-type enzyme, due to a higher K(m). Similar to RNase III, RNase III[DeltadsRBD] is inhibited by high concentrations of Mn(2+), which is due to metal ion occupancy of an inhibitory site on the enzyme. RNase III[DeltadsRBD] retains strict specificity for dsRNA, as indicated by its inability to cleave (rA)(25), (rU)(25), or (rC)(25). Moreover, dsDNA, ssDNA, or an RNA-DNA hybrid are not cleaved. Low (micromolar) concentrations of ethidium bromide block RNase III[DeltadsRBD] cleavage of substrate, which is similar to the inhibition seen with RNase III and is indicative of an intercalative mode of inhibition. Finally, RNase III[DeltadsRBD] is sensitive to specific Watson-Crick base-pair substitutions which also inhibit RNase III. These findings support an RNase III mechanism of action in which the catalytic domain (i) can function independently of the dsRBD, (ii) is dsRNA-specific, and (iii) participates in cleavage site selection.  相似文献   

17.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.  相似文献   

18.
The RNase P cleavage reaction was studied as a function of the number of base-pairs in the acceptor-stem and/or T-stem of a natural tRNA precursor, the tRNA(Tyr)Su3 precursor. Our data suggest that the location of the Escherichia coli RNase P cleavage site does not depend merely on the lengths of the acceptor-stem and T-stem as previously suggested. Surprisingly, we find that precursors with only four base-pairs in the acceptor-stem are cleaved by M1 RNA and by holoenzyme. Furthermore, we show that both disruption of base-pairing, and alteration of the nucleotide sequence (without disruption of base-pairing) proximal to the cleavage site result in aberrant cleavage. Thus, the identity of the nucleotides near the cleavage site is important for recognition of the cleavage site rather than base-pairing. The important nucleotides are those at positions -2, -1, +1, +72, +73 and +74. We propose that the nucleotide at position +1 functions as a guiding nucleotide. These results raise the possibility that Mg2+ binding near the cleavage site is dependent on the identity of the nucleotides at these positions. In addition, we show that disruption of base-pairing in the acceptor-stem affects both Michaelis-Menten constants, Km and kcat.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号