首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched beta-1,6-N-acetyl-D-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-beta-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria.  相似文献   

2.
Polymeric beta-1,6-N-acetyl-D-glucosamine (poly-beta-1,6-GlcNAc) has been implicated as an Escherichia coli and Staphylococcus epidermidis biofilm adhesin, the formation of which requires the pgaABCD and icaABCD loci, respectively. Enzymatic hydrolysis of poly-beta-1,6-GlcNAc, demonstrated for the first time by chromatography and mass spectrometry, disrupts biofilm formation by these species and by Yersinia pestis and Pseudomonas fluorescens, which possess pgaABCD homologues.  相似文献   

3.
4.
The linear homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in diverse eubacteria. Its function in Escherichia coli K-12 requires the gene products of the pgaABCD operon, all of which are necessary for biofilm formation. PgaC is an apparent glycosyltransferase that is required for PGA synthesis. Using a monoclonal antibody directed against E. coli PGA, we now demonstrate that PgaD is also needed for PGA formation. The deletion of genes for the predicted outer membrane proteins PgaA and PgaB did not prevent PGA synthesis but did block its export, as shown by the results of immunoelectron microscopy (IEM) and antibody adsorption assays. IEM also revealed a conditional localization of PGA at the cell poles, the initial attachment site for biofilm formation. PgaA contains a predicted beta-barrel porin and a superhelical domain containing tetratricopeptide repeats, which may mediate protein-protein interactions, implying that it forms the outer membrane secretin for PGA. PgaB contains predicted carbohydrate binding and polysaccharide N-deacetylase domains. The overexpression of pgaB increased the primary amine content (glucosamine) of PGA. Site-directed mutations targeting the N-deacetylase catalytic activity of PgaB blocked PGA export and biofilm formation, implying that N-deacetylation promotes PGA export through the PgaA porin. The results of previous studies indicated that N-deacetylation of beta-1,6-GlcNAc in Staphylococcus epidermidis by the PgaB homolog, IcaB, anchors it to the cell surface. The deletion of icaB resulted in release of beta-1,6-GlcNAc into the growth medium. Thus, covalent modification of beta-1,6-GlcNAc by N-deacetylation serves distinct biological functions in gram-negative and gram-positive species, dictated by cell envelope differences.  相似文献   

5.
The majority of Bordetella sp. virulence determinants are regulated by the BvgAS signal transduction system. BvgAS mediates the control of multiple phenotypic phases and a spectrum of gene expression profiles specific to each phase in response to incremental changes in the concentrations of environmental signals. Studies highlighting the critical role of this signaling circuitry in the Bordetella infectious cycle have focused on planktonically growing bacterial cells. It is becoming increasingly clear that the major mode of bacterial existence in the environment and within the body is a surface-attached state known as a biofilm. Biofilms are defined as consortia of sessile microorganisms that are embedded in a matrix. During routine growth of Bordetella under agitating conditions, we noticed the formation of a bacterial ring at the air-liquid interface of the culture tubes. We show here that this surface adherence property reflects the ability of these organisms to form biofilms. Our data demonstrate that the BvgAS locus regulates biofilm development in Bordetella. The results reported in this study suggest that the Bvg-mediated control in biofilm development is exerted at later time points after the initial attachment of bacteria to the different surfaces. Additionally, we show that these biofilms are highly tolerant of a number of antimicrobials, including the ones that are currently recommended for treatment of veterinary and human infections caused by Bordetella spp. Finally, we discuss the significance of the biofilm lifestyle mode as a potential contributor to persistent infections.  相似文献   

6.
Bordetellae are respiratory pathogens that infect both humans and animals. Bordetella bronchiseptica establishes asymptomatic and long-term to life-long infections of animal nasopharynges. While the human pathogen Bordetella pertussis is the etiological agent of the acute disease whooping cough in infants and young children, it is now being increasingly isolated from the nasopharynges of vaccinated adolescents and adults who sometimes show milder symptoms, such as prolonged cough illness. Although it has been shown that Bordetella can form biofilms in vitro, nothing is known about its biofilm mode of existence in mammalian hosts. Using indirect immunofluorescence and scanning electron microscopy, we examined nasal tissues from mice infected with B. bronchiseptica. Our results demonstrate that a wild-type strain formed robust biofilms that were adherent to the nasal epithelium and displayed architectural attributes characteristic of a number of bacterial biofilms formed on inert surfaces. We have previously shown that the Bordetella Bps polysaccharide encoded by the bpsABCD locus is critical for the stability and maintenance of three-dimensional structures of biofilms. We show here that Bps is essential for the formation of efficient nasal biofilms and is required for the colonization of the nose. Our results document a biofilm lifestyle for Bordetella in mammalian respiratory tracts and highlight the essential role of the Bps polysaccharide in this process and in persistence of the nares.  相似文献   

7.
Robust biofilm formation by Vibrio fischeri depends upon activation of the symbiosis polysaccharide (syp) locus, which is achieved by overexpressing the RscS sensor kinase (RscS(+)). Other than the Syp polysaccharide, however, little is known about V. fischeri biofilm matrix components. In other bacteria, biofilms contain polysaccharides, secreted proteins, and outer membrane vesicles (OMVs). Here, we asked whether OMVs are part of V. fischeri biofilms. Transmission electron microscopy revealed OMV-like particles between cells within colonies. In addition, OMVs could be purified from culture supernatants of both RscS(+) and control cells, with the former releasing 2- to 3-fold more OMVs. The increase depended upon the presence of an intact syp locus, as an RscS(+) strain deleted for sypK, which encodes a putative oligosaccharide translocase, exhibited reduced production of OMVs; it also showed a severe defect in biofilm formation. Western immunoblot analyses revealed that the RscS(+) strain, but not the control strain or the RscS(+) sypK mutant, produced a distinct set of nonproteinaceous molecules that could be detected in whole-cell extracts, OMV preparations, and lipopolysaccharide (LPS) extracts. Finally, deletion of degP, which in other bacteria influences OMV production, decreased OMV production and reduced the ability of the cells to form biofilms. We conclude that overexpression of RscS induces OMV production in a manner that depends on the presence of the syp locus and that OMVs produced under these conditions contain antigenically distinct molecules, possibly representing a modified form of lipopolysaccharide (LPS). Finally, our data indicate a correlation between OMV production and biofilm formation by V. fischeri.  相似文献   

8.
Conover MS  Mishra M  Deora R 《PloS one》2011,6(2):e16861
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.  相似文献   

9.
Kang  Jiamu  Li  Qianqian  Liu  Liu  Jin  Wenyuan  Wang  Jingfan  Sun  Yuyang 《Applied microbiology and biotechnology》2018,102(4):1837-1846

Escherichia coli (E. coli) is associated with an array of health-threatening contaminations, some of which are related to biofilm states. The pgaABCD-encoded poly-beta-1,6-N-acetyl-D-glucosamine (PGA) polymer plays an important role in biofilm formation. This study was conducted to determine the inhibitory effect of gallic acid (GA) against E. coli biofilm formation. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of GA against planktonic E. coli were 0.5 and 4 mg/mL, and minimal biofilm inhibitory concentration and minimal biofilm eradication concentration values of GA against E. coli in biofilms were 2 and 8 mg/mL, respectively. Quantitative crystal violet staining of biofilms and ESEM images clearly indicate that GA effectively, dose-dependently inhibited biofilm formation. CFU counting and confocal laser scanning microscopy measurements showed that GA significantly reduced viable bacteria in the biofilm. The contents of polysaccharide slime, protein, and DNA in the E. coli biofilm also decreased. qRT-PCR data showed that at the sub-MIC level of GA (0.25 mg/mL) and expression of pgaABC genes was downregulated, while pgaD gene expression was upregulated. The sub-MBC level of GA (2 mg/mL) significantly suppressed the pgaABCD genes. Our results altogether demonstrate that GA inhibited viable bacteria and E. coli biofilm formation, marking a novel approach to the prevention and treatment of biofilm-related infections in the food industry.

  相似文献   

10.
Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies. Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key factor in establishing structured biofilm communities in the respiratory tract.  相似文献   

11.
Biofilms are composed of bacterial cells embedded in an extracellular polysaccharide matrix. A major component of the Escherichia coli biofilm matrix is PGA, a linear polymer of N-acetyl-D-glucosamine residues in beta(1,6) linkage. PGA mediates intercellular adhesion and attachment of cells to abiotic surfaces. In this report, we present genetic and biochemical evidence that PGA is also a major matrix component of biofilms produced by the human periodontopathogen Actinobacillus actinomycetemcomitans and the porcine respiratory pathogen Actinobacillus pleuropneumoniae. We also show that PGA is a substrate for dispersin B, a biofilm-releasing glycosyl hydrolase produced by A. actinomycetemcomitans, and that an orthologous dispersin B enzyme is produced by A. pleuropneumoniae. We further show that A. actinomycetemcomitans PGA cross-reacts with antiserum raised against polysaccharide intercellular adhesin, a staphylococcal biofilm matrix polysaccharide that is genetically and structurally related to PGA. Our findings confirm that PGA functions as a biofilm matrix polysaccharide in phylogenetically diverse bacterial species and suggest that PGA may play a role in intercellular adhesion and cellular detachment and dispersal in A. actinomycetemcomitans and A. pleuropneumoniae biofilms.  相似文献   

12.
Microorganisms can live and proliferate as individual cells swimming freely in the environment, or they can grow as highly organized, multicellular communities encased in a self-produced polymeric matrix in close association with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The intense search over the last few years for factors involved in biofilm development has revealed that distantly related bacterial species recurrently make use of the same elements to produce biofilms. These common elements include a group of proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose and the poly-beta-1,6-N-acetylglucosamine. This review summarizes current knowledge about these three common elements and their role in biofilm development.  相似文献   

13.
We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B also inhibited biofilm formation and dispersed preformed biofilms of Burkholderia species. These results imply a role for PNAG in the maintenance of Burkholderia biofilm integrity. While PNAG was present in biofilms of all of the wild-type test organisms, a ΔpgaBC mutant of B. multivorans (Mu5) produced no detectable PNAG, indicating that these genes are needed for Burkholderia PNAG formation. Furthermore, restoration of PNAG production in PNAG negative E. coli TRXWMGΔC (ΔpgaC) by complementation with B. multivorans pgaBCD confirmed the involvement of these genes in Burkholderia PNAG production. While the confocal scanning laser microscopy of untreated wild-type B. multivorans showed thick, multilayered biofilm, Mu5 and dispersin B-treated wild-type biofilms were thin, poorly developed, and disrupted, confirming the involvement of PNAG in B. multivorans biofilm formation. Thus, PNAG appears to be an important component of Burkholderia biofilms, potentially contributing to its resistance to multiple antibiotics and persistence during chronic infections, including cystic fibrosis-associated infection.  相似文献   

14.
15.
16.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

17.
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.  相似文献   

18.
Staphylococcus epidermidis plays a major role in biofilm-related medical device infections. Herein the anti-biofilm activity of the human liver-derived antimicrobial peptide hepcidin 20 (hep20) was evaluated against polysaccharide intercellular adhesin (PIA)-positive and PIA-negative clinical isolates of S. epidermidis. Hep20 markedly inhibited biofilm formation and bacterial cell metabolism of PIA-positive and PIA-negative strains, but the decrease in biofilm biomass only partially correlated with a decrease in viable bacteria. Confocal microscope images revealed that, in the presence of hep20, both PIA-positive and PIA-negative strains formed biofilms with altered architectures and reduced amounts of extracellular matrix. Co-incubation of hep20 with vancomycin produced no synergistic effect, evaluated as number of viable cells, both in preventing biofilm formation and in treating preformed biofilms. In contrast, biofilms obtained in the presence of hep20, and then exposed to vancomycin, displayed an increased susceptibility to vancomycin. These results suggest that hep20 may inhibit the production/accumulation of biofilm extracellular matrix.  相似文献   

19.
[Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms were less sensitive to treatment with amoxicillin and enrofloxacin than planktonic bacteria. Taken together, these findings provide a first step in understanding of the biofilm mechanisms in [P.] pneumotropica, which might contribute to elucidation of colonization and pathogenesis mechanisms for these obligate inhabitants of the mouse mucosa.  相似文献   

20.
The ability of Pseudomonas aeruginosa to form biofilms and cause chronic infections in the lungs of cystic fibrosis patients is well documented. Numerous studies have revealed that P. aeruginosa biofilms are highly refractory to antibiotics. However, dramatically fewer studies have addressed P. aeruginosa biofilm resistance to the host's immune system. In planktonic, unattached (nonbiofilm) P. aeruginosa, the exopolysaccharide alginate provides protection against a variety of host factors yet the role of alginate in protection of biofilm bacteria is unclear. To address this issue, we tested wild-type strains PAO1, PA14, the mucoid cystic fibrosis isolate, FRD1 (mucA22+), and the respective isogenic mutants which lacked the ability to produce alginate, for their susceptibility to human leukocytes in the presence and absence of IFN-gamma. Human leukocytes, in the presence of recombinant human IFN-gamma, killed biofilm bacteria lacking alginate after a 4-h challenge at 37 degrees C. Bacterial killing was dependent on the presence of IFN-gamma. Killing of the alginate-negative biofilm bacteria was mediated through mononuclear cell phagocytosis since treatment with cytochalasin B, which prevents actin polymerization, inhibited leukocyte-specific bacterial killing. By direct microscopic observation, phagocytosis of alginate-negative biofilm bacteria was significantly increased in the presence of IFN-gamma vs all other treatments. Addition of exogenous, purified alginate to the alginate-negative biofilms restored resistance to human leukocyte killing. Our results suggest that although alginate may not play a significant role in bacterial attachment, biofilm development, and formation, it may play an important role in protecting mucoid P. aeruginosa biofilm bacteria from the human immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号