首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of blue light and calcium on elongation of hypocotyl segments of Cucumber (Cucumis sativa L. cv Burpee's Pickler) were studied. Cucumber seedlings grown in dim red light showed a rapid decline in the rate of hypocotyl elongation when irradiated with high intensity (100 micromoles per square meter per second) blue light. In intact, 4-day-old seedlings the inhibition began within 2 minutes after the onset of blue-light irradiation and reached a maximum of approximately 55% within 4 minutes. Hypocotyl segments cut from 4-day-old seedlings also showed an inhibition of elongation in response to blue light when segments were floated on aqueous buffer and exposed to blue light for 3 hours. In the presence of 2 micromolar indole-3-acetic acid, blue light caused a 50% inhibition of elongation. Buffering free calcium in the incubation medium with 0.1 millimolar ethylene glycol bis(-aminoethyl ether)- N,N,N′,N′-tetraacetic acid eliminated the blue-light inhibition of segment elongation. Several experiments confirmed a specific requirement for calcium for the blue-light-induced inhibition of segment elongation. Treating segments with 0.2 micromolar fusicoccin abolished the inhibition of elongation by blue light as did buffering the medium at pH 4. Adding 1 millimolar ascorbate to incubation medium also eliminated the inhibition of segment elongation caused by blue light. Several compounds implicated in cell-wall redox reactions alter the magnitude of the blue-light-induced inhibition. The activity of peroxidase isolated from the cell-wall free space of cucumber hypocotyls was inhibited by ascorbate and low pH. The results are consistent with the hypothesis that blue light inhibits elongation by inducing an increase in cell-wall peroxidase activity and implicate calcium ions in the response to blue light.  相似文献   

2.
Aung LH 《Plant physiology》1978,62(2):276-279
Hormonal and plant factors regulating the development of the inhibited cotyledonary buds of Lycopersicon esculentum Mill. cv. `Fireball' seedlings were studied. Excision of the immature plumular leaves of 5- to 20- millimeter length significantly stimulated bud development after 2 to 4 days, but excision of leaves exceeding 20-millimeter length was without effect. Apical application of 20 microliters of 5 millimolar abscisic acid significantly promoted development of the cotyledonary buds after 6 days. A subapical ring of 0.1 millimolar concentration of 2,3,5-triiodobenzoic acid (TIBA) in lanolin significantly promoted cotyledonary bud development after 11 days. Twenty microliters of 0.1 millimolar 6-benzylaminopurine (BAP) applied directly to the cotyledonary bud loci significantly promoted bud development, but 1 micromolar gibberellin A4/7 was ineffective. Application of 0.1 millimolar BAP in lanolin to the petiole or hypocotyl was ineffective. However, application of 0.1 millimolar TIBA as a ring around the petioles of the cotyledons or 1-centimeter on the hypocotyl below the cotyledons significantly promoted cotyledonary bud development.  相似文献   

3.
Choe HT  Whang M 《Plant physiology》1986,80(2):305-309
Chloroplasts, isolated from the primary leaves of 7-day-old seedlings, were incubated in vitro at 25°C with 2-chloroethylphosphonic acid (ethephon) under light (0.16 milliwatts per square centimeter) and dark conditions. Ethephon at 1 micromolar (0.1445 ppm), 0.1 and 1 millimolar, or 5 microliters ethylene promoted the deterioration of chloroplasts, increased proteolysis, and reduced the chlorophyll content and PSI and PSII during 72 hours under both light and dark conditions. The decline in PSI and PSII occurred prior to a measurable loss of chlorophyll. The loss of photosynthetic activity affected by ethephon was initiated prior to 12 hours of incubation. After 24 hours in light, 0.1 millimolar (1.445 ppm) epthephon significantly reduced PSI and PSII and promoted the total free amino acid liberation in isolated chloroplasts. In darkness the rate of loss of PSI activity was about 50% of that in light. After 24 hours, in light at 1 millimolar epthephon, PSII activity was 55% of the control, yet nearly 90% of the chlorophyll remained, which indicates that the loss of thylakoid integrity was promoted by ethephon. Ethylene injected in the chloroplast medium at 5 microliters (0.22 micromolar per milliliter) reduced PSI by nearly 50% of the initial in 12 hours. In leaf sections floated in 5 microliters per milliliter suspension medium, a 36% loss of chlorophyll of the control in 36 hours was observed. Cycloheximide at 0.5 millimolar masked the effect of 1 millimolar ethephon and maintained the initial chlorophyll content during the 72 hour period.  相似文献   

4.
Peeling the abaxial epidermis from oat leaves (Avena sativa var. Victory) induces the formation of wound ethylene and the development of resistance to cellulolytic digestion of mesophyll cell walls. Ethylene release begins between 1 and 2 hours after peeling in the light or dark. Aminoethoxyvinylglycine (AVG, 0.1 millimolar), CoCl2 (1.0 millimolar), propyl gallate (PG, 1.0 millimolar) or aminooxyacetic acid (AOA, 1.0 millimolar) inhibits, whereas AgNO3 stimulates wound ethylene formation. Incubation on inhibitors of ethylene biosynthesis (AVG, CoCl2, PG, AOA) or action (AgNO3, hypobaric pressure or the trapping of ethylene with HgClO4) also prevents the development of wound-induced resistance to enzymic cell wall digestion. 1-Aminocyclopropane-1-carboxylic acid (ACC, 1.0 millimolar) reverses AVG (0.1 millimolar) inhibition of the development of resistance. Exogenous ethylene partially induces the development of resistance in unwounded oat leaves.

These results suggest that peeling of oat leaves induces ethylene biosynthesis, which in turn effects changes in the mesophyll cells resulting in the development of resistance to cellulolytic digestion.

  相似文献   

5.
Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite (water potential = −0.01 megapascal) for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite (water potential = −0.30 megapascal). A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level: 3.7 nanograms per milligram dry weight (74-fold increase). A comparison of the polyA+ RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional (isoelectric focusing-sodium dodecyl sulfate) polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar (±) abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.  相似文献   

6.
Incubation of soybean hypocotyl sections with 0.1 millimolar 2,2′-dipyridyl in the absence of auxin results in increases in growth rate and in cell wall extensibility lasting for about 3 hours. This is accompanied by greatly decreased biosynthesis of hydroxyproline, which ultimately appears in the wall, and in slightly reduced oxygen uptake, both of which continue for at least 9 hours. Continuous synthesis of hydroxyproline which appears in the cell wall is thus not necessary for short term growth. The decrease in growth and cell wall extensibility that occurs between the 3rd and 9th hours of dipyridyl inhibition cannot be attributed to cross-linking of newly synthesized hydroxyproline, since its synthesis is still inhibited.  相似文献   

7.
Gustine DL 《Plant physiology》1981,68(6):1323-1326
White clover (Trifolium repens L.) callus tissue cultures accumulated the phytoalexin medicarpin after treatment with sulfhydryl reagents. After 24-hour exposures to sulfhydryl reagents, maximum obtainable levels of medicarpin, determined by high performance liquid chromatography analysis, were found with 50 millimolar N-ethyl maleimide, 25 millimolar HgCl2, 2 millimolar p-chloromercuribenzoic acid, and 0.5 millimolar iodoacetamide. Increased medicarpin levels were also observed in callus treated with p-chloromercuribenzene sulfonic acid, but the highest concentration tested (11.8 millimolar) did not produce the maximum response. After sulfhydryl treatment, medicarpin levels were unchanged for 4 to 6 hours, but steadily increased thereafter with maximum accumulation occurring by 48 to 50 hours for p-chloromercuribenzoic acid, p-chloromercuribenzene sulfonic acid, and HgCl2 treated callus. Medicarpin levels did not increase in iodoacetamide-treated callus until 8 hours after sulfhydryl exposure, and medicarpin levels were still increasing linearly after 50 hours. Three other metabolic inhibitors, KCN, NaF, and Na3AsO4, did not exhibit elicitor activity, indicating cell death was not a factor in the response. Pretreatment of callus with 20 millimolar dithiothreitol followed by 40 millimolar N-ethyl maleimide did not produce the phytoalexin response. Preincubation with dithiothreitol also prevented elicitor activity of HgCl2 and p-chloromercuribenzene sulfonic acid. These results suggested that dithiothreitol pretreatment somehow prevented sulfhydryl groups within the cell from reacting with the test compounds. These experiments established that the integrity of sulfhydryl groups is important in regulating phytoalexin accumulation in callus cells.  相似文献   

8.
Hypocotyl hooks have been shown to influence greening in excised cucumber (Cucumis sativus) cotyledons. The properties of the lag phase are greatly affected by the presence or absence of the hook tissue. A 45-second light pretreatment followed by 4 hours of darkness is sufficient to remove the lag phase from cotyledons with hooks, while hookless cotyledons require 2 hours of continuous illumination followed by 1 hour of dark incubation to break the lag phase. The effect of hooks on cotyledon greening is enhanced if the hooks are shielded from light. Cutting off the hooks after lag phase removal caused a marked decrease in chlorophyll accumulation in the cotyledons. These observations may indicate that the hypocotyl hooks produce a substance or substances needed in the greening process, which are translocated to the cotyledons. Indoleacetic acid, abscisic acid, gibberellin A3, 6-benzylamino purine and δ-aminolevulinic acid do not show any activity; on the other hand, ethylene appears to replace partially the hypocotyl hooks.  相似文献   

9.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

10.
Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of l-[U-(14)C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM.Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in l-[U-(14)C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly.  相似文献   

11.
Isolation of amyloplasts from developing maize endosperm   总被引:3,自引:3,他引:0  
Methods for the formation of protoplasts from developing maize endosperm and for the aqueous isolation of intact amyloplasts from such protoplasts are described. Protoplasts were obtained after incubating endosperm slices in a medium containing cellulase and pectolyase for 5 days at 4°C or 5 hours at 30°C. After purification in a Ficoll density gradient, the protoplasts were reptured by forcing the suspension through a Nitex mesh (20 micrometer) positioned at the lower end of a modified disposable syringe. The resulting filtrate was layered on a discontinuous Ficoll density gradient of 30, 15, and 10%. Each Ficoll solution contained 0.7 molar sucrose, 10 millimolar arginine, 10 millimolar dl-dithiothreitol, 50 millimolar 2-(N-morpholino)ethanesulfonic acid (pH 5.6), and 2 millimolar CaCl2. After 3 hours in the cold, an amyloplast fraction 50 to 93% intact and free from cytoplasmic, mitochondrial, and glyoxysomal contamination was recovered in the 15% Ficoll layer. Amyloplast intactness was estimated by fluorescent microscopy and activity of certain amyloplast marker enzymes before and after rupture of the amyloplast membrane. Starch branching enzyme, ADPG-pyrophosphorylase, and nitrite reductase were used as amyloplast marker enzymes.  相似文献   

12.
After 1 hour, exogenous deoxyribonucleic acid was degraded within a culture medium at 25 C (pH 6) containing protoplasts of Daucus carota L. var. sativa. Low temperature incubation (1 C) or the addition of 45 millimolar sodium citrate to the medium eliminated DNase activity for at least 4.5 hours. This DNase activity was not reduced at pH 7 or 9, nor by addition of 200 millimolar adenosine 5′-triphosphate.  相似文献   

13.
Anthocyanin synthesis, hair formation, and the synthesis of ascorbic acid oxidase are all phytochrome-mediated reactions occurring in the hypocotyl of mustard (Sinapis alba L.), controlled by phytochrome actually located in the hypocotyl. A comparison of these three reactions showed that in certain respects they differ greatly in their response to light. The ability of the seedling to respond to light by showing the three responses was strongly influenced by the state of development of the seedling. White light given very early after seed imbibition was unable to evoke any of the three reactions. By 50 hours after imbibition, all systems were fully inducible by light. The addition of actinomycin D to a fully competent seedling coincident with illumination strongly inhibited the development of all three responses. In contrast, the addition of cordycepin at this time inhibited the synthesis of anthocyanin and ascorbic acid oxidase but had no effect on hair formation. Cycloheximide inhibited all three responses when given up to several hours after light. This suggests the necessity for RNA and protein synthesis for light-induced expression of these reactions, and that the RNA species involved in the three reactions may have differing degrees of polyadenylation. The lag period between the onset of light and the first display of the response was 3 hours for anthocyanin and ascorbic acid oxidase synthesis, and about 5 hours for hair formation. Amounts of light sufficient to give large increases in the levels of ascorbic acid oxidase and hair formation gave a much smaller increase in anthocyanin synthesis. Hair formation and ascorbic acid oxidase synthesis showed a much greater sensitivity to induction at early stages of seedling development than did anthocyanin synthesis. Following an inductive light period, anthocyanin synthesis was sensitive to far red light inhibition for a period twice as long as the other two reactions. The differences in the response of the three reactions to light suggest that the phytochrome-mediated reactions which control their development also differ.  相似文献   

14.
Ornithine carbamoyltransferase (OCT) activity was detected in extracts from mature leaves, fruit, germinating seeds, and seedlings of Vitis vinifera L. Michaelis-Menten constants for OCT were 3.5 millimolar for carbamyl phosphate and 5.5 millimolar for l-ornithine. Concentrations of l-ornithine greater than 10 millimolar slightly inhibited the enzyme, whereas carbamyl phosphate at concentrations greater than the optimal (about 10 millimolar) did not affect OCT activity. l-Citrulline formation was linear with incubation period for the first 25 minutes and with increasing amounts of enzyme up to an equivalent of about 200 milligrams of fresh tissue. The optimum pH for in vitro OCT activity was between 8.4 and 8.8, and the optimum incubation temperature was 38 C.  相似文献   

15.
Polarography, using cylindrical platinum electrodes, proved suitable for measuring changes in the internal apical O2 concentration of the primary root of pea (Pisum sativum L. cv Meteor) effected by KCN and/or salicylhydroxamic acid (SHAM) in the bathing medium. An electrical rootaeration analog was used to help evaluate some of the results. Concentrations of KCN ≤0.05 millimolar had no significant effect. In response to 0.1 millimolar KCN, the O2 concentration rose substantially for approximately 2 hours, then declined, and after 10 hours had frequently fallen below the pretreatment level. Such changes suggest an initial inhibition of cytochrome oxidase-mediated O2 uptake followed by an induction of the alternative, cyanide-resistant respiratory pathway. These treatments proved nonlethal. Changes in O2 concentration similar to those described for 0.1 millimolar KCN were observed in response to 1 and 10 millimolar KCN but these treatments were lethal and the root apex became soft and often appeared flooded. Roots survived and showed no significant responses when treated with SHAM at concentrations ≤5 millimolar. However, when the alternative pathway had been (apparently) induced by 0.1 millimolar KCN, the addition of 5 millimolar SHAM to the bathing medium caused a substantial and persistent rise in the root apical O2 concentration, suggesting that this (nonlethal) concentration of SHAM could indeed inhibit O2 uptake via the cyanide-resistant pathway.

It is concluded that while O2 uptake normally occurs by the cytochrome pathway in the primary pea root, the alternative, cyanide-resistant pathway can be induced by 0.1 millimolar KCN.

  相似文献   

16.
Diacylglycerol contents of excised soybean (Glycine max L.) hypocotyl segments, incubated for 4 hours in the presence or absence of a growth promoting concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) were monitored by three different methods as a sensitive measure of the action in vivo of C-type phospholipases. By all three methods, steady state levels of diacylglycerols representing about 3% of the total lipids or about 7% of the neutral lipids, depending on method of assay, declined 18% over 4 hours of incubation as determined by extraction of total lipids and analysis by thin layer chromatography and densitometry. The average decline with 2,4-D-treated segments was less but the difference from controls was not significant. In those experiments where a small effect of 2,4-D was noted, the fraction showing an elevated diacylglycerol level in response to 2,4-D, after separation into membrane and supernatant fractions, was the supernatant and not the membranes. Results were confirmed from analyses of total fatty acids in each of the major lipid fractions and from diacylglycerol assays by conversion into phosphatidic acid upon incubation with [γ-32P]ATP and purified diacylglycerol phosphokinase from Escherichia coli. In the presence of 2,4-D, the diacylglycerol content of the membranes was unchanged compared to membranes from control segments. As with the densitometric method, the small 2,4-D induced increase in diacylglycerols, when observed, was insignificant and in the supernatant. The only membrane-associated lipid fraction consistently showing a response to 2,4-D was the fraction containing sterols esterified with fatty acids. Either total microsomes or purified plasma membranes when incubated for 10 to 20 minutes with 1 micromolar 2,4-D showed no accelerated formation of diacylglycerols compared to membranes not incubated. The results do not support operation during auxin growth of the animal paradigm where diacylglycerol activation of C-type protein kinases occurs in response to activated phospholipase C breakdown of phosphoinositides.  相似文献   

17.
Lieberman M  Wang SY 《Plant physiology》1982,69(5):1150-1155
The decline in ethylene production in apple (Pyrus malus L. cv. Golden Delicious) tissue slices during 24 hours incubation in 600 millimolar sorbitol and 10 millimolar 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) is recognized as a senescent phenomenon. The inclusion of very high concentrations (100 millimolar) of Ca2+, Mg2+, or Ca2+ plus Mg2+ severely inhibited ethylene production during the first 6 hours of incubation. However, after 6 hours and up to 24 hours the ethylene-forming system was stablized. These high concentrations of Ca2+, Mg2+, or Ca2+ plus Mg2+ virtually eliminated lipid peroxidation and protein leakage from these slices. Also conversion of 1-aminocyclopropane-1-carboxylic-1-acid to ethylene and the influence of indoleacetic acid on ethylene production was stabilized after 24 hours of incubation by these high concentrations of Ca2+, Mg2+, and Ca2+ plus Mg2+. Addition of divalent ionophores severely inhibited ethylene production, but this inhibition was prevented by Ca2+ in concentrations greater than the ionophore. These data suggest that the loss of ethylene production by aging tissue slices results from degradation of membranes. They support previous work that indicates that the ethylene-forming system, perhaps the segment of the pathway from 1-aminocyclo-propane-1-carboxylic-1-acid to ethylene, resides in the plasma membrane.  相似文献   

18.
d-Usnic acid dehydrogenase is induced in Evernia prunastri thalli by a supply of exogenous d-usnic acid in light. This effect is enhanced by red light pulses through a two step way: a very rapid increase of activity after the first 10 minutes of red light, which is not reversed by far-red light, and a slow enhancement following successive red light pulses at the beginning of each hour of incubation. The last response is completely reversed by far-red following red light. Although induction of the enzyme is not achieved in the dark, 0.1 and 0.5 millimolar cyclic AMP, or 0.1 millimolar dibutyryl cyclic AMP substitutes light action and, then, the enzyme is produced. In addition, phytochrome—far red-absorbing form—increases the amount of endogenously produced cyclic AMP and this effect is shown to be photoreversible when ethylenediaminetetraacetic acid is inhibiting adenylate cyclase.  相似文献   

19.
Characteristics of hook formation by bean seedlings   总被引:2,自引:2,他引:0       下载免费PDF全文
Explants were isolated from 6-day-old etiolated bean seedlings (Phaseolus vulgaris L. cv. Black Valentine) containing the cotyledons with 4 mm of hypocotyl just below the node and/or the epicotyl. During incubation on distilled water, uneven growth of the hypocotyl or epicotyl occurred resulting in the formation of a hook. The more rapid growth of the side which became convex was not dependent upon the presence of the slower growing concave side. It was concluded that the main axis has an intrinsic capacity for asymmetric growth. The growth leading to hook formation was inhibited by α-naphthaleneacetic acid at concentrations above 0.2 milligram per liter.  相似文献   

20.
Abe S  Takeda J 《Plant physiology》1988,87(2):389-394
When dielectrophoresis and electrofusion of barley (Hordeum vulgare var Moor) leaf protoplasts were assayed in the presence of 0.1 to 1 millimolar lanthanum ion (La3+) in the basal medium (0.7 molar mannitol, 1 millimolar piperazine-N, N-bis[2-ethanesulfonic acid]-Na [pH 6.7], 0.1 millimolar CaCl2), dielectrophoresis and induction of electrofusion were strongly inhibited. The latter remained inhibited and the former recovered by about 60% after washing the La3+ -treated protoplasts without EDTA. These inhibitions were almost completely abolished by washing the La3+ -treated protoplasts with 1 millimolar EDTA. Inductively coupled plasma atomic emission spectroscopic analysis revealed that protoplasts retained a considerable amount of La3+ after washing without EDTA and released most of the bound La3+ by washing with 1 millimolar EDTA. This tightly bound La3+ seemed responsible for the inhibition of electrofusion and dielectrophoresis that was observed in the La3+ -treated protoplasts after washing. ζ-potentials of protoplasts were -39.0±3.2 millivolts, -16.7 ± 2.6 millivolts, and virtually zero in media containing 0, 0.1, and 0.3 millimolar La3+ (I = 7.2 millimolar), respectively, and had a positive value (+ 14.2 ± 2.2 millivolts) in the presence of 1 millimolar La3+. These effects of La3+ on ζ-potentials were easily abolished by washing without EDTA. This indicates that charged species located at the surface of plasma membrane of protoplasts cannot account for the sites at which La3+ exerts its inhibition of dielectrophoresis and electrofusion. In contrast, the promotion of spherical fusion and the reduction of broken fusion products observed in the presence of La3+ were almost completely abolished by washing without EDTA. Our results also indicate that the initial induction and development of electrofusion can be studied independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号