首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purification and analysis of murine 2-5A-dependent RNase   总被引:6,自引:0,他引:6  
2-5A-dependent RNase (RNase L, RNase F) is an enzyme which mediates effects of 2-5A (px(A2'p)nA; x = 2 or 3, n greater than or equal to 2) in cells. 2-5A binding activity present in mouse liver extracts was measured using a 32P-labeled 2-5A derivative. Analysis of Scatchard plots was consistent with a single noninteracting 2-5A binding site with a Ka of 2.5 X 10(10) M-1. Similarly, affinity labeling of proteins with a 32P-labeled 2-5A derivative revealed a single, high-affinity 2-5A-binding protein of Mr 80,000. This 2-5A-binding protein was the only mouse liver protein specifically and consistently eluted by 2-5A from an affinity resin consisting of core(2-5A) covalently attached to cellulose. The 2-5A-eluted protein could degrade polyuridylic acid but not polycytidylic acid. Furthermore, when the 2-5A-eluted protein was electrophoresed into a polyuridylic acid-containing, nondenaturing gel, a band of degraded polyuridylic acid was demonstrated after incubation with 2-5A. There was no band of degraded polyuridylic acid when the elution was performed either in the absence of oligonucleotide or in the presence of low amounts of a closely related analog of 2-5A, p3I2'pA2'pA. Therefore, the Mr 80,000 2-5A-binding protein and the 2-5A-dependent RNase were almost certainly the same protein. Finally, the Mr 80,000 2-5A-binding protein was purified to homogeneity by electroelution from a polyacrylamide gel.  相似文献   

2.
2-5A is an intracellular effector that has been implicated in interferon action, hormonal regulation, and cell growth control. 2-5A action is mediated through its activation of 2-5A-dependent RNase (RNase L, RNase F). Affinity resins [2-5A-cellulose and core (2-5A)-cellulose] were chemically synthesized for purification and immobilization of 2-5A-dependent RNase from mouse L cells and rabbit reticulocyte lysates. The breakdown of poly(U)-[3'-32P]Cp to acid-soluble fragments was demonstrated using the 2-5A-dependent RNase:2-5A -cellulose complex; this activity was enhanced by adding (free) 2-5A. In contrast, RNase activity was measured from the 2-5A-dependent RNase:core (2-5A)-cellulose complex only after the addition of free 2-5A. The rabbit reticulocyte 2-5A-dependent RNase is activated only by tetramer or higher oligomers of 2-5A; therefore there was breakdown of poly(U)-[3'-32P]Cp using core (2-5A)-cellulose-bound reticulocyte 2-5A-dependent RNase after addition of tetramer 2-5A but there was no poly(U) degradation in the presence of trimer 2-5A. The absence of significant general nuclease in the assays was demonstrated by the resistance to breakdown of poly(C)-[3'-32P]Cp (not susceptible to 2-5A-dependent RNase). Moreover, core (2-5A)-cellulose was used to develop a sensitive (subnanomolar) assay for the detection of authentic 2-5A. 2-5A, or the material to be tested, was added to mouse L-cell 2-5A-dependent RNase:core (2-5A)-cellulose complex in the presence of poly(U)-[3'-32P]Cp. The concentration of 2-5A in the sample could be measured from the amount of poly(U) degradation. Several closely related analogs of 2-5A were tested and found to be completely inactive. The technology described herein may be applied to the study of the regulation of 2-5A-dependent RNase, the detection of 2-5A from cells and tissues, and other aspects of the 2-5A system.  相似文献   

3.
The N-terminal ankyrin repeat domain of the 2'-5'-linked oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, has been crystallized by the hanging-drop vapor diffusion method in the presence of 2-5 Angstroms. The crystals belong to an orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 63.11 Angstroms, b = 73.03 Angstroms, and c = 82.64 Angstroms. There is one molecule per asymmetric unit. The crystals diffract to at least 2.1 Angstroms resolution using synchrotron radiation and are suitable for X-ray structure analysis at high resolution.  相似文献   

4.
2-5A-dependent RNase is the terminal factor in the interferon-regulated 2-5A system thought to function in both the molecular mechanism of interferon action and in the general control of RNA stability. However, direct evidence for specific functions of 2-5A-dependent RNase has been generally lacking. Therefore, we developed a strategy to block the 2-5A system using a truncated form of 2-5A-dependent RNase which retains 2-5A binding activity while lacking RNase activity. When the truncated RNase was stably expressed to high levels in murine cells, it prevented specific rRNA cleavage in response to 2-5A transfection and the cells were unresponsive to the antiviral activity of interferon alpha/beta for encephalomyocarditis virus. Remarkably, cells expressing the truncated RNase were also resistant to the antiproliferative activity of interferon. The truncated RNase is a dominant negative mutant that binds 2-5A and that may interfere with normal protein-protein interactions through nine ankyrin-like repeats.  相似文献   

5.
2',5'-oligoadenylates known as 2-5A [px(A2'p)nA; chi = 2 or 3, n greater than or equal to 2] are produced in interferon-treated cells in response to double-stranded RNA. 2-5A binds with high affinity to a 2-5A-dependent RNase resulting in the cleavage of single-stranded RNA. An efficient, rapid, and extremely sensitive photoaffinity labeling method was developed to facilitate detection of 2-5A-dependent RNase. A bromine-substituted and radioactive derivative of 2-5A, the 5'-monophosphate, p(A2'p)2(br8A2'p)2A3'-[32P]Cp, was synthesized as probe for 2-5A-dependent RNase. Even though this bromine-substituted analog of 2-5A bore no 5'-terminal triphosphate or diphosphate, it bound to 2-5A-dependent RNase with the same high affinity as did 2-5A per se but it was a less effective activator of the RNase under the present assay conditions. The presence of bromine atoms in the 2-5A analog enhanced by more than 200-fold crosslinking to 2-5A-dependent RNase under a uv lamp; many additional polypeptides were also labeled but at much lower levels. Furthermore, using high-intensity uv laser irradiation (308 nm) covalent attachment of the bromine-substituted 2-5A analog to 2-5A-dependent RNase was readily achieved within 10(-6) s.  相似文献   

6.
Upregulation of key components of the 2',5'-oligoadenylate (2-5A) synthetase/RNase L pathway has been identified in extracts of peripheral blood mononuclear cells from individuals with chronic fatigue [corrected] syndrome, including the presence of a low molecular weight form of RNase L. In this study, analysis of 2',5'-Oligoadenylate (2-5A) binding and activation of the 80- and 37-kDa forms of RNase L has been completed utilizing photolabeling/immunoprecipitation and affinity assays, respectively. Saturation of photolabeling of the 80- and the 37-kDa RNase L with the 2-5A azido photoprobe, [(32)P]pApAp(8-azidoA), was achieved. Half-maximal photoinsertion of [(32)P]pApAp(8-azidoA) occurred at 3.7 x 10(-8) m for the 80-kDa RNase L and at 6.3 x 10(-8) m for the 37-kDa RNase L. Competition experiments using 100-fold excess unlabeled 2-5A photoaffinity probe, pApAp(8-azidoA), and authentic 2-5A (p(3)A(3)) resulted in complete protection against photolabeling, demonstrating that [(32)P]pApAp(8-azidoA) binds specifically to the 2-5A-binding site of the 80- and 37-kDa RNase L. The rate of RNA hydrolysis by the 37-kDa RNase L was three times faster than the 80-kDa RNase L. The data obtained from these 2-5A binding and 2-5A-dependent activation studies demonstrate the utility of [(32)P]pApAp(8-azidoA) for the detection of the 37-kDa RNase L in peripheral blood mononuclear cell extracts.  相似文献   

7.
A variety of 2-5A (px(A2'p)nA; x = 2 or 3, n greater than or equal to 2) analogs were assayed for their abilities to activate murine 2-5A-dependent RNase (subsequently "the nuclease") using a recently developed method. This technique consists of immobilizing and partially purifying the nuclease using core-cellulose [A2'p)3A-cellulose) and then monitoring the breakdown of poly(U)-3'-[32P]Cp into acid-soluble fragments. Several 5'-adenosinecapped analogs of 2-5A (containing a tetra-, tri-, or diphosphate) were analyzed, and it was found that reducing the number of phosphoryl groups between the 5' to 5'-diadenosine linkages resulted in a progressive loss of activity. Because A5' pppp(A2'p)3A was a potent activator of the nuclease yet stable during the assay these results suggested that a free 5'-phosphoryl group may not be required for the activation of the nuclease. A number of 8-bromoadenosine-substituted analogs of 2-5A were also studied. Curiously, the brominations decreased the activities of the 5'-di- and triphosphorylated molecules while substantially increasing the activities of the 5'-monophosphorylated species. The results indicated that a tri- or diphosphate moiety on the 5'-end of 2-5A or the presence of ATP is not absolutely required for the nuclease to be active. Furthermore, the ATP analog, beta, gamma-methylene ATP, did not inhibit the activity of the nuclease. Finally, a 3',5'-phosphodiester linkage isomer of 2-5A and a 3'-deoxy (cordycepin) analog of 2-5A were tested, and both were found to be completely without activity.  相似文献   

8.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2',5'-phosphates. Even though extensive structural information is available on RNase A complexes with mononucleotides and oligonucleotides, the interaction of RNase A with tRNA has not been fully investigated. We report the complexation of tRNA with RNase A in aqueous solution under physiological conditions, using a constant RNA concentration and various amounts of RNase A. Fourier transform infrared, UV-visible, and circular dichroism spectroscopic methods were used to determine the RNase binding mode, binding constant, sequence preference, and biopolymer secondary structural changes in the RNase-tRNA complexes. Spectroscopic results showed 2 major binding sites for RNase A on tRNA, with an overall binding constant of K = 4.0 x 105 (mol/L)-1. The 2 binding sites were located at the G-C base pairs and the backbone PO2 group. Protein-RNA interaction alters RNase secondary structure, with a major reduction in alpha helix and beta sheets and an increase in the turn and random coil structures, while tRNA remains in the A conformation upon protein interaction. No tRNA digestion was observed upon RNase A complexation.  相似文献   

9.
Analogs of the triphosphate 2'-5'-linked adenylate trimer (ppp5'A2'p5'A2'p5'A, called 2-5A) which contain 3'-deoxyadenosine (cordycepin) instead of adenosine either in positions one and two, or in all three positions, are 10-100-fold less potent than is parent 2-5A in inhibition of protein synthesis in intact cells, when utilizing calcium co-precipitation techniques to introduce the 5'-triphosphate oligonucleotides into the cells. That the inhibition of protein synthesis was a consequence of activation of the 2-5A-dependent endonuclease by the 3'-deoxyadenosine analogs of 2-5A was demonstrated in obtaining the ribosomal RNA cleavage pattern that is characteristic of endonuclease activation by parent 2-5A. Additional results (i.e. lack of activity by the dimer species ppp5'(3'dA)2'p5'-(3'dA) or the monomer 3'dA) as well as kinetic analysis both in intact cells and in cell-free extracts provided further evidence that the inhibition of protein synthesis observed with these 3'-deoxyadenosine 2-5A analogs was not due to their degradation to the antimetabolite monomer unit 3'-deoxyadenosine.  相似文献   

10.
11.
The antiviral and antitumor actions of interferons are caused, in part, by a remarkable regulated RNA cleavage pathway known as the 2-5A/RNase L system. 2′-5′ linked oligoadenylates (2-5A) are produced from ATP by interferon-inducible synthetases. 2-5A activates pre-existing RNase L, resulting in the cleavage of RNAs within single-stranded regions. Activation of RNase L by 2-5A leads to an antiviral response, although precisely how this happens is a subject of ongoing investigations. Recently, RNase L was identified as the hereditary prostate cancer 1 gene. That finding has led to the discovery of a novel human retrovirus, XMRV. My scientific journey through the 2-5A system recounts some of the highlights of these efforts. Knowledge gained from studies on the 2-5A system could have an impact on development of therapies for important viral pathogens and cancer.  相似文献   

12.
To investigate the relative importance of each of the ribose 3'-hydroxyl groups of 2-5A (ppp5' A2'p5'A2'-p5' A) in determining binding to and activation of the 2-5A-dependent endonuclease (RNase L), the 3'-hydroxyl functionality of each adenosine moiety of 2-5A trimer triphosphate was sequentially replaced by hydrogen. The analog in which the 5'-terminal adenosine was replaced by 3'-deoxyadenosine (viz. ppp5'(3'dA)-2'p5' A2'p5' A) was bound to RNase L as well as 2-5A itself and was only 3 times less potent than 2-5A as an activator of RNase L. On the other hand, when the second adenosine unit was replaced by 3'-deoxyadenosine (viz. ppp5' A2'p5'(3'dA)2'p5' A), binding to RNase L was decreased by a factor of eight relative to 2-5A trimer and, even more dramatically, there was a 500-1000-fold drop in ability to activate the 2-5A-dependent endonuclease. Finally, when the 3'-hydroxyl substituent was converted to hydrogen in the 2'-terminal residue of 2-5A, a significant increase in both binding and activation ability occurred. We conclude that only the 3'-hydroxyl group of the second (from the terminus) nucleotide residue of 2-5A is needed for effective activation of RNase L.  相似文献   

13.
A convergent synthetic approach was used to conjugate 2',5'-oligoadenylate (2-5A, p5'A2' [p5'A2'](n)()p5'A) to phosphorodiamidate morpholino oligomers (morphants). To provide requisite quantities of 2-5A starting material, commercially and readily available synthons for solid-phase synthesis were adapted for larger scale solution synthesis. Thus, the tetranucleotide 5'-phosphoryladenylyl(2'-->5')adenylyl(2'-->5')adenylyl(2'-->5')adenosine (p5'A2'p5'A2'](2)p5'A2', tetramer 2-5A, 9) was synthesized starting with 2',3'-O-dibenzoyl-N(6),N(6)-dibenzoyl adenosine prepared from commercially available 5'-O-(4-monomethoxytrityl) adenosine. Coupling with N(6)-benzoyl-5'-O-(4,4'-dimethoxytrityl)-3'-O-(tert-butyldimethylsilyl) adenosine-2'-(N,N-diisopropyl-2-cyanoethyl)phosphoramidite, followed by oxidization and deprotection, generated 5'-deprotected dimer 2-5A. Similar procedures lengthened the chain to form protected tetramer 2-5 A. The title product 9 p5'A(2'p5'A)(3) (tetramer 2-5A) was obtained through phosphorylation of the terminal 5'-hydroxy of the protected tetramer and removal of remaining protecting groups using concentrated ammonium hydroxide-ethanol (3:1, v/v) at 55 degrees C and tetrabutylammonium fluoride (TBAF) in THF at room temperature, respectively. The 2-5A-phosphorodiamidate morpholino antisense chimera 11 (2-5A-morphant) was synthesized by covalently linking an aminolinker-functionalized phosphorodiamidate morpholino oligomer with periodate oxidized 2-5A tetramer (p5'A2'[p5'A2'](2)p5'A). The resulting Schiff base was reduced with cyanoborohydride thereby transforming the ribose of the 2'-terminal nucleotide of 2-5A N-substituted morpholine. RNase L assays demonstrated that this novel 2-5A-antisense chimera had significant biological activity, thereby providing another potential tool for RNA ablation.  相似文献   

14.
In rabbit reticulocyte lysates the addition of exogenous 2-5A leads after 10-20 minutes to the inhibition of protein synthesis. This inhibition can be blocked by rat antiserum to 2-5A. In intact ribosomes the ribosomal RNA is cleaved after 2-5A addition, but this cleavage is not in correlation with the protein synthesis shutoff. Ribosomal 5S RNA and 5,8S RNA are not cleaved even after several hours of incubation with 2-5A. The degradation of polysome associated mRNA correlates with the protein synthesis inhibition as revealed by Northern blot hybridization of globin mRNA with 32P-labelled p beta G plasmid. The addition of 2-5A antiserum to the rabbit reticulocyte lysate also inhibits the degradation of polysome bound globin mRNA.  相似文献   

15.
Analogs of 2-5A trimer 5'-monophosphate (2'-5')pA3,p5'A2'p5'A2'p5'A containing 9-(3-fluoro-3-deoxy-c-D-xylofuranosyl)adenine (AF) or 3'-fluoro-3'- deoxyadenosine (AF) at different positions of the chain have been synthesized. All of them were compared with (2'-5')pA3 and (2'-5')pA2 (3'dA) by (i) their ability to bind to 2-5A-dependent endoribonuclease(RNase L) of mouse L cells and of rabbit reticulocyte lysates and (ii) their susceptibility to the degradation by the (2'-5')phosphodiesterase activity. The results of this study suggest that the oligonucleotide conformation is important for its biochemical properties.  相似文献   

16.
Nakanishi M  Goto Y  Kitade Y 《Proteins》2005,60(1):131-138
RNase L is responsible for the 2-5A host defense system, an RNA degradation pathway present in cells of higher vertebrates that functions in both the antiviral and anticellular activities of interferon. The activity of RNase L is tightly regulated and is exerted only in the presence of 2-5A. The postulated mechanism of its regulation is as follows: the N-terminal half ankyrin-repeat domain masks the C-terminal half nuclease domain in the absence of 2-5A. On binding 2-5A at the ankyrin-repeat domain, RNase L forms a homodimer and removes the ankyrin-repeat domain from the nuclease domain to become the active form. A conformational change in the ankyrin-repeat domain is a key step in this hypothetical mechanism, but there is as yet no evidence for such a change. To clarify the events induced by 2-5A binding, we established procedures for expression and purification of the ankyrin-repeat domain of human RNase L. Fluorescence spectra of the protein showed clear difference in the presence and absence of 2-5A. The alterations in the spectra supported conformational changes of the protein. Time-resolved anisotropy measurements indicated that 2-5A binding led to a significant decrease in the rotational radius of the protein. In addition, 2-5A provided the domain with resistance to protease digestion as a result of a conformational change. These results indicated that the ankyrin-repeat domain of RNase L constricts its structure by binding of 2-5A. This observation suggests a revised model of the 2-5A-induced activation of RNase L.  相似文献   

17.
To potentiate the 2-5A (2',5'-oligoadenylate)-antisense and peptide nucleic acid (PNA) approaches to regulation of gene expression, composite molecules were generated containing both 2-5A and PNA moieties. 2-5A-PNA adducts were synthesized using solid-phase techniques. Highly cross-linked polystyrene beads were functionalized with glycine tethered through a p-hydroxymethylbenzoic acid linker and the PNA domain of the chimeric oligonucleotide analogue was added by sequential elongation of the amino terminus with the monomethoxytrityl protected N-(2-aminoethyl)-N-(adenin-1-ylacetyl)glycinate. Transition to the 2-5A domain was accomplished by coupling of the PNA chain to dimethoxytrityl protected N-(2-hydroxyethyl)-N-(adenin-1-ylacetyl)glycinate. Finally, (2-cyanoethyl)-N,N-diisopropyl-4-O-(4,4-dimethoxytrityl)butylphosphor amidite and the corresponding (2-cyanoethyl)-N,N-diisopropylphosphoramidite of 5-O-(4,4'-dimethoxytrityl)-3-O-(tert-butyldimethylsilyl)-N6-benzoyladeno sine were the synthons employed to add the 2 butanediol phosphate linkers and the four 2',5'-linked riboadenylates. The 5'-phosphate moiety was introduced with 2-[[2-(4,4'-dimethoxytrityloxy)ethyl]sulfonyl]ethyl-(2-cyanoethyl) -N,N-diisopropylphosphoramidite. Deprotection with methanolic NH3 and tetraethylammonium fluoride afforded the desired products, 2-SA-pnaA4, 2-5A-pnaA8 and 2-5A-pnaA12. When evaluated for their ability to cause the degradation of two different RNA substrates by the 2-5A-dependent RNase L, these new 2-5A-PNA conjugates were found to be potent RNase L activators. The union of 2-5A and PNA presents fresh opportunities to explore the biological and therapeutic implications of these unique approaches to antisense.  相似文献   

18.
Inhalant nitrites are drugs of abuse that have been shown to enhance tumor growth rate in mice and are epidemiologically linked to an increased risk of Kaposi's sarcoma. Because nitrites produce nitric oxide, we hypothesized that their toxicological effects might be partly mediated via regulation of angiogenic factors such as vascular endothelial growth factor (VEGF). Preliminary studies showed that isobutyl nitrite (ISBN) incubation stimulated VEGF protein expression in J774 macrophage cells. C57BL/6 mice exposed to ISBN in air exhibited significant up-regulation of VEGF protein and mRNA in the liver, but not in the lung. Liver mRNA expression of VEGF receptor 2 (VEGFR-2), VEGFR-3, Smad5, and Smad7 was also significantly altered. These results demonstrate that in vivo exposure to an inhalant nitrite results in altered tissue expression of VEGF and its receptors, suggesting that some of its toxicological effects may be mediated partly through a mechanism involving angiogenesis.  相似文献   

19.
20.
The detrimental effects of ethanol exposure during nervous system development have been well established. The cellular mechanisms of ethanol neurotoxicity, however, have not been clearly defined. Recent studies suggest that neurotrophin signaling pathways may be involved in ethanol-mediated neuronal death. The present investigation, therefore, was designed to examine ethanol-induced alterations in neurotrophin receptor protein levels in the developing central nervous system (CNS) following chronic ethanol treatment administered during the early neonatal period. For this study, rats were exposed to ethanol via vapor inhalation from postnatal day 4 (P4) to P10. Brains were then dissected on P10 or P21, and Western blots used to quantify expression of neurotrophin receptors TrkA, TrkB, TrkC, and p75. This early postnatal ethanol treatment produced significant alterations in receptor levels in hippocampus, septum, cerebral cortex, and cerebellum. The alterations seen were variable, with decreases generally found in hippocampus and cerebellum, increases noted in septum, and changes in both directions occurring in cortex. These alterations were generally more prevalent in males than in females. While most of the receptor changes observed were transient, sustained or delayed alterations were occasionally seen in hippocampus, cortex, and cerebellum. These results suggest that developmental ethanol exposure modulates expression of these neurotrophin receptors throughout the CNS, alterations which could have wide-ranging effects on functional CNS development. The possible linkage between such changes and abnormalities encountered in the fetal alcohol syndrome are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号