首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineered adipose tissue could be used for the reconstruction or augmentation of soft tissues lost due to mastectomy or lumpectomy in plastic and reconstructive surgery. Preadipocytes are a feasible cell source for adipose tissue regeneration. However, the enhancement of the in vivo adipogenic conversion of preadipocytes remains a major task. In vitro, the adipogenic differentiation of preadipocytes prior to implantation might enhance the adipose tissue regeneration. In the present study, we investigated whether implantation of adipogenic-differentiated preadipocytes enhances the adipose tissue formation compared with implantation of undifferentiated preadipocytes. We also investigated whether basic fibroblast growth factor (bFGF) further enhances the adipose tissue formation mediated by the implantation of adipogenic-differentiated preadipocytes. A fibrin matrix containing human preadipocytes cultured in adipogenic differentiation-inducing conditions with (group 1) or without (group 2) bFGF was injected into the subcutaneous spaces of athymic mice. Fibrin matrices containing undifferentiated human preadipocytes with (group 3) or without (group 4) bFGF were also implanted. Six weeks after implantation, the implanted cells formed new tissues in all groups. Importantly, the implantation of adipogenic-differentiated preadipocytes resulted in more extensive adipogenesis than the implantation of undifferentiated preadipocytes, as evaluated by adipose tissue area and human adipocyte-specific gene expression in the newly formed tissues. In addition, bFGF enhanced neovascularization in the newly formed tissues and further enhanced the adipogenesis mediated by the adipogenic-differentiated preadipocytes. The present study demonstrates that the implantation of adipogenic-differentiated preadipocytes enhances adipose tissue regeneration, as compared with the implantation of undifferentiated preadipocytes, and that cell transplantation-mediated adipogenesis can be further enhanced by the delivery of bFGF.  相似文献   

2.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

3.
Glucocorticoids are pivotal for adipose tissue development. Rodent studies suggest that corticosteroid-binding globulin (CBG) modulates glucocorticoid action in adipose tissue. In humans, both genetic CBG deficiency and suppressed CBG concentrations in hyperinsulinemic states are associated with obesity. We hypothesized that CBG deficiency in humans modulates the response of human preadipocytes to glucocorticoids, predisposing them to obesity. We compared normal preadipocytes with subcultured preadipocytes from an individual with the first ever described complete deficiency of CBG due to a homozygous null mutation. CBG-negative preadipocytes proliferated more rapidly and showed greater peroxisome proliferator-activated receptor-gamma-mediated differentiation than normal preadipocytes. CBG was not expressed in normal human preadipocytes. Glucocorticoid receptor number and binding characteristics and 11beta-hydroxysteroid dehydrogenase activity were similar for CBG-negative and normal preadipocytes. We propose that the increased proliferation and enhanced differentiation of CBG-negative preadipocytes may promote adipose tissue deposition and explain the obesity seen in individuals with genetic CBG deficiency. Furthermore, these observations may be relevant to obesity occurring with suppressed CBG concentrations associated with hyperinsulinemia.  相似文献   

4.
5.
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/β-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 μM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.  相似文献   

6.
Summary Cells in fetal adipose tissue and cells in vitro are characterized by rapid proliferation. Serum factors have been shown to be important for the rapid proliferation of cells in vitro. The present experiment was performed to determine if neuroendocrine regulatory mechanisms of the fetus can influence the actions of serum factors on preadipocyte proliferation and differentiation in vitro.Sera were obtained from decapitated fetal pigs and intact littermates during gestation. Sera were tested for their effects on primary cultures of preadipocytes and stromalvascular cells derived from inguinal adipose tissue of young Sprague-Dawley rats. Coverslip cultures were used for histochemical analysis of enzymes after 12 days of incubation with test media.Analysis of growth curves produced from sequential [3H]-thymidine labeling indicated that fetal age influences rates of proliferation. Sera from decapitated fetal pigs specifically reduced the number of proliferating preadipocytes in culture. Sera from decapitated fetal pigs induced a minimum of 50% less differentiation of sn-glycerol-3-phosphate dehydrogenase activity than sera from intact pigs at all fetal ages. Histochemical staining for enzymes of differentiating preadipocytes was also reduced in cultures incubated with sera from decapitated fetal pigs in comparison to sera from intact pigs. The present study has demonstrated that the in vivo effect of decapitation on fetal adipose tissue development is a consequence of alterations in systemic factors present in serum in response to removal of central regulation by the hypothalamic-pituitary axis.  相似文献   

7.
In an attempt to characterize the preadipocytes of the adipose tissue of female rat, we studied by electron microscopy the differentiation of the cells into mature adipocytes in in vitro cultures. The preadipocytes arose from the stroma-vascular fraction of perirenal and perigenital adipose tissue. Culture of the preadipocytes in an enriched medium consisting of Dulbecco's medium supplemented with 10% fetal calf serum, antibiotics, rat triglycerides (0.5%), insulin (290 nM) and Tween 80 (0.1 mg/ml) induced their adipose conversion. The morphology of preadipocytes changed progressively. They accumulated fat granules, droplets and finally globules, which fused together. The cell organelles featured qualitative and quantitative modifications. The nucleus migrated with most mitochondria and a part of the Golgi system towards the cell periphery; the rough endoplasmic reticulum, dilated at the initial stage of differentiation became less and less conspicuous; the perinuclear Golgi system was dispersed between lipid droplets during fat accumulation; thick bundles of microfilaments, localized beneath the plasma membrane disappeared; large lipid droplets were surrounded by a network of microfilaments; many microvesicles and some "rosettes" typical of mature adipocytes could be observed. Nevertheless, the ultrastructural criteria did not allow to clearly discriminate the undifferentiated cells: early preadipocytes (without lipid droplets), adipoblasts and fibroblasts, all of these being probably present in the culture system.  相似文献   

8.
Adipogenesis is preceded by development of a microvascular network, and optimal functioning of adipose tissue as an energy store and endocrine organ is dependent on extensive vascularization. We have examined the role of endothelial cell-derived factors that influence the proliferation of human preadipocytes. Microvascular endothelial cells and preadipocytes were isolated from human omental and subcutaneous adipose tissue biopsies by use of a developed procedure of collagenase digest, immunoselection, and differential trypsinization. Conditioned medium from microvascular endothelial cell cultures promoted the proliferation of preadipocytes (P = <0.001) and (to a lesser extent) other cell types. No depot-specific differences in mitogenic capacity of microvascular endothelial cell medium or of preadipocyte response were observed. These results indicate that adipose tissue endothelial cells secrete soluble adipogenic factor(s).  相似文献   

9.
10.
11.
FGF-10 is a mesenchymal factor affecting epithelial cells during pattern formation. However, the expression and physiological role of FGF-10 in adults remains to be elucidated. We examined the expression of FGF-10 mRNA in a variety of adult rat tissues, and found to be most abundant in white adipose tissue. In white adipose tissue, FGF-10 mRNA was expressed in preadipocytes but not in mature adipocytes. The expression in white adipose tissue during postnatal development was also examined. The expression level was low at postnatal day 10 (P10). However, FGF-10 mRNA was abundantly detected later on (P28 and P48) when white adipose tissue growth was stimulated. We also examined the activity of recombinant FGF-10 for primary rat preadipocytes. FGF-10 showed significant mitogenic activity for primary preadipocytes, but did not affect the differentiation of preadipocytes. The expression profile of FGF-10 mRNA and the activity of FGF-10 reported here indicate that FGF-10, a unique secreted factor produced in white adipose tissue, acts as a growth factor for preadipocytes in white adipose tissues.  相似文献   

12.
Tumor necrosis factor-alpha (TNF) is known to inhibit fat cell development in vitro and to be expressed in adipose tissue suggesting that it may act as an auto-/paracrine regulator of adipose tissue mass in vivo. We demonstrate here that endogenous TNF-mRNA expression of cultured human preadipocytes and adipocytes is suppressed by the unspecific phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), which is frequently used to trigger the differentiation process. As assessed by the measurement of glycerophosphate dehydrogenase, IBMX stimulated the differentiation of human preadipocytes in a dose dependent manner up to threefold but remained ineffective when cells were simultaneously treated with 1 nM TNF. These results suggest that the adipogenic effect of IBMX is mediated by suppression of endogenous TNF production.  相似文献   

13.
Optimization of the differentiation of human preadipocytes in vitro   总被引:7,自引:0,他引:7  
This study aimed at developing an optimal protocol for proliferation and differentiation of preadipocytes that is a prerequisite for constructing an ideal biohybrid composed of viable adipose precursor cells in a three-dimensional matrix. Such an implant could represent an adequate solution for correcting soft tissue defects, e.g., extensive deep burns or tumor resections. Preadipocytes were isolated from human subcutaneous adipose tissue samples and cultured in Dulbecco's modified eagle medium (DMEM)/Ham's F12 medium (F12) or OPTIMEM medium with or without the addition of human serum (hS) or fetal calf serum (FCS). The advantages of fibronectin-coated culture dishes for preadipocyte yield after isolation and differentiation were evaluated. After culture expansion, differentiation was induced by insulin, isobutylmethylxanthine, pioglitazone, dexamethasone, and transferrin in the absence of serum. The extent of differentiation was assayed by measuring the activity of glycerophosphate dehydrogenase as well as counting of differentiated versus undifferentiated cells. Our results show that fibronectin coating does not only strongly increase the yield of preadipocytes after isolation from adipose tissue but also significantly enhances differentiation of precursor cells to mature adipocytes. For optimal cell expansion, DMEM/F12 is more promoting than OPTIMEM and culturing with FCS shows a slightly better proliferation compared with hS supplementation. Differentiation, in contrast, is significantly improved when hS is used instead of FCS during proliferation. Our results smooth the way for autologous preadipocyte culturing and show that hS for preadipocyte culturing opens new and promising perspectives for adipose tissue engineering by optimizing in vitro expansion in cell culture and inducing substantial differentiation.  相似文献   

14.
Since we have previously reported that hyperthyroidism induces adipose tissue hyperplasia in the young rat, the effect of thyroid hormones on growth and differentiation of preadipocytes from retroperitoneal (RPAT) and epididymal (EAT) adipose tissue was studied in a primary culture system which allows a precocious cell differentiation. In this culture system, preadipocytes from RPAT exhibited a greater potentially to differentiate than cells from EAT. Chronic exposure to triiodothyronine (T3) induced an acceleration of the differentiating process as shown by a transient increase of the number of differentiated cells without alteration of cell multiplication. This effect was more important in cultures of cells from RPAT than from EAT. T3 was ineffective on lipoprotein-lipase activity but induced a stimulation of the esterification pathway which was durable and could likely be related to an increased lipid turn-over. T3 induced also a stimulation of fatty acid biosynthesis, only on the first stages of morphological differentiation which suggests that this effect could be specifically in relation with the stimulation of adipose conversion.  相似文献   

15.
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism.  相似文献   

16.
MiR-143 plays an important role in promoting the adipogenic differentiation of pre-adipocytes. Here, we report that systematic silencing of miR-143 in mice by using a locked-nucleic-acid-modified oligonucleotide (LNA-antimiR) did not lead to any obvious abnormalities in the adipose tissue differentiation. Furthermore, there were no significant differences in the expression level of several adipogenic marker genes, such as PPARγ and C/EBPα, in these animals compared with the controls. Therefore, we hypothesize that miR-143 may function as a fine tuning molecule rather than as a switch in the adipogenic regulatory network in mice. In addition, the proposed miR-143 target, ERK5, which was previously identified in human preadipocytes, was not effectively inhibited by miR-143 either in the murine preadipocyte cell line, 3T3-L1, or in primary mouse adipose tissue. However, we did fibroblast growth factor 7 (Fgf7) was identified as a target of miR-143 in murine adipogenesis.  相似文献   

17.
To understand the significance of the reported depot differences in preadipocyte dynamics, we developed a procedure to identify committed preadipocytes in the stromovascular fraction of fresh human adipose tissue. We documented that adipocyte fatty acid binding protein (aP2) is expressed in human preadipocyte clones capable of replication, indicating that can be used as a marker of committed preadipocytes. Because aP2 expression can be induced in macrophages, stromovascular cells were also stained for the macrophage marker CD68. We found aP2+CD68- cells (designated as committed preadipocytes) that did not have lipid droplets (true preadipocytes) and that did have lipid droplets < 6.5 microm in diameter (very immature adipocytes). Adipose tissue from subcutaneous, omental, and mesenteric depots was obtained from nine patients undergoing bariatric surgery for measurement of stromovascular cell number, the number of committed preadipocytes (aP2+CD68-), aP2+ macrophages (aP2+CD68+), and aP2- macrophages (aP2-CD68+). The number of committed preadipocytes did not differ significantly between depots but varied >20-fold among individuals. Total cell number, stromovascular cell number, and the number of aP2- macrophages was less (P < 0.05) in subcutaneous than in omental fat (means +/- SE, in millions: subcutaneous, 2.3 +/- 0.3, 1.4 +/- 0.3, and 0.17 +/- 0.08; and omental, 4.8 +/- 0.7, 3.8 +/- 0.5, and 0.34 +/- 0.06); mesenteric depot was intermediate. These data indicate that the cellular composition of adipose tissue varies between depots and between individuals. The ability to quantify committed preadipocytes in fresh adipose tissue should facilitate study of adipose tissue biology.  相似文献   

18.
A preadipocyte clonal line has been established from porcine subcutaneous tissue. This line, designated PSPA, showed a fibroblastic phenotype and kept on growing under a preadipose condition even after reaching confluence. When confluent cultures were stimulated with insulin, dexamethasone, biotin, pantothenate, and octanoate, growth was arrested, and the cells exhibited a marked increase in lipogenesis. However, adipose conversion was not induced upon exposure of PSPA cells to a standard hormonal mixture of mouse 3T3-L1 cells, and they continued dividing as did the preadipocytes in growth medium. By serially omitting each individual adipogenic agent from the PSPA differentiation medium, it was determined that octanoate was one of the most essential but the only factor able to induce growth arrest. Octanoate supplementation to 3T3-L1 medium increased the triglyceride accumulation of PSPA cells accompanied by growth arrest. Both RT-PCR and Western blot analysis supported the idea of octanoate as a potential agent with the antiproliferative activity requisite for porcine preadipocytes to enter terminal differentiation.  相似文献   

19.
Increase of fat cells (FCs) in adipose tissue is attributed to proliferation of preadipocytes or immature adipocytes in the early stage, as well as adipogenic differentiation in the later stage of adipose development. Although both events are involved in the FC increase, they are contrary to each other, because the former requires cell cycle activity, whereas the latter requires cell cycle withdrawal. Therefore, appropriate regulation of cell cycle inhibition is critical to adipogenesis. In order to explore the important cell cycle inhibitors and study their expression in adipogenesis, we adopted a strategy combining the Gene Expression Omnibus (GEO) database available on the NCBI website and the results of quantitative real-time PCR (qPCR) data in porcine adipose tissue. Three cell cycle inhibitors – cyclin G2 (CCNG2), cyclin-dependent kinase inhibitor 2C (CDKN2C) and peripheral myelin protein (PMP22) – were selected for study because they are relatively highly expressed in adipose tissue compared with muscle, heart, lung, liver and kidney in humans and mice based on two GEO DataSets (GDS596 and GDS3142). In the latter analysis, they were found to be more highly expressed in differentiating/ed preadipocytes than in undifferentiated preadipocytes in human and mice as shown respectively by GDS2366 and GDS2743. In addition, GDS2659 also suggested increasing expression of the three cell cycle inhibitors during differentiation of 3T3-L1 cells. Further study with qPCR in Landrace pigs did not confirm the high expression of these genes in adipose tissue compared with other tissues in market-age pigs, but confirmed higher expression of these genes in FCs than in the stromal vascular fraction, as well as increasing expression of these genes during in vitro adipogenic differentiation and in vivo development of adipose tissue. Moreover, the relatively high expression of CCNG2 in adipose tissue of market-age pigs and increasing expression during development of adipose tissue was also confirmed at the protein level by western blot analysis. Based on the analysis of the GEO DataSets and results of qPCR and Western blotting we conclude that all three cell cycle inhibitors may inhibit adipocyte proliferation, but promote adipocyte differentiation and hold a differentiated state by inducing and maintaining cell cycle inhibition. Therefore, their expression in adipose tissue is positively correlated with age and mature FC number. By regulating the expression of these genes, we may be able to control FC number, and, thus, reduce excessive fat tissue in animals and humans.  相似文献   

20.
Factors involved in the growth of adipose tissue were examined by testing interactions under cell culture conditions between cellular components of this tissue and plasma from overfed rats. The cellular factors were capillary fragments, endothelial cells during growth and after confluence, fibroblasts, adipocytes and adipose precursor cells before determination (adipoblasts) and after determination (preadipocytes). Multiplying adipose precursor cells stimulated markedly the multiplication of endothelial cells, while their own multiplication was inhibited. The stimulatory effect was partially transferred into the culture medium but not remaining in culture dishes conditioned by preceding cultures of adipose precursor cells, removed by Tris-EDTA buffer or mechanically. The activity was apparently not dependent on feeding conditions. Plasma from overfed rats did not affect endothelial or adipose precursor cell multiplication, but caused more rapid lipid filling of the latter. Endothelial cells facilitated lipid accumulation of preadipocytes. These results indicate that when adipose tissue is expanding by adipocyte multiplication capillarization is stimulated secondarily, being then capable of facilitating triglyceride accumulation in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号