首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitrogen fixation in nodules provides leguminous plants with an ability to grow in nitrogen-starved soil. Infection of the host plants by microsymbionts triggers various physiological and morphological changes during nodule formation. In Lotus japonicus, expression of early nodulin (ENOD) genes is triggered by perception of bacterial signal molecules, nodulation factors (Nod factors). We examined the expression patterns of ENOD40 genes during the nodule formation process. Two ENOD40 genes of L. japonicus were specifically expressed in the nodule formation process, but they showed different expression patterns upon infection. Each ENOD40 gene demonstrates an individual specificity and regulation with regard to rhizobial infection.  相似文献   

3.
4.
5.
6.
7.
8.
Nodulin gene expression is an integral and highly specific part of the formation of nitrogen-fixing nodules on the roots of leguminous plants. Dependent on the time of expression during root nodule development, nodulin genes can be divided into early and late nodulin genes. A brief overview of the functions assigned to early and late nodulins is presented. We hypothesize that nodulin genes originate from regular plant genes that evolved to fit the regulatory and/or physiological constraints of symbiotic nitrogen fixation. Data on nodulins and nodulin genes, nodulation taxonomy and nodule development are evaluated in the light of this hypothesis.  相似文献   

9.
10.
We have used in situ hybridization to examine the spatial organization of cells expressing the early nodulin gene (ENOD2) during the development of alfalfa root nodules. ENOD2 gene expression was found in the nodule parenchyma, uninfected cells surrounding the symbiotic region of both effective and ineffective nodules. However, in empty nodules, ENOD2 gene expression was found in a mass of parenchyma cells at the base of the nodule. Similar results were also observed in 11-day-old nodules that contained infected cells but that had not yet begun to express leghemoglobin. Although early events of nodulation result in the induction of ENOD2 expression in cells at the nodule base, the pattern of cells expressing ENOD2 during nodule growth appears to be correlated with the development of other peripheral tissues.  相似文献   

11.
12.
The role of phytohormones in plant-microbe symbioses   总被引:9,自引:2,他引:7  
Hirsch  A.M.  Fang  Y.  Asad  S.  Kapulnik  Y. 《Plant and Soil》1997,194(1-2):171-184
  相似文献   

13.
14.
15.
16.
In pea (Pisum sativum) up to 50 nodulation mutants are known, several of which are affected in the early steps of the symbiotic interaction with Rhizobium sp. bacteria. Here we describe the role of the sym2 gene in nodulation (Nod) factor perception. Our experiments show that the sym2A allele from the wild pea variety Afghanistan confers an arrest in infection-thread growth if the Rhizobium leguminosarum bv viciae strain does not produce Nod factors with a NodX-mediated acetylation at their reducing end. Since the induction of the early nodulin gene ENOD12 in the epidermis and the formation of a nodule primordium in the inner cortex were not affected, we conclude that more than one Nod factor-perception mechanism is active. Furthermore, we show that sym2A-mediated control of infection-thread growth was affected by the bacterial nodulation gene nodO.  相似文献   

17.
Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen‐fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so‐called nodulin genes are induced, including large families that encode small peptides. Using a three‐hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA‐binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single‐stranded RNA‐binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA‐binding peptides.  相似文献   

18.
19.
20.
Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD40-2). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes; however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号